Glass formation followed by in-situ tomography

E. Gouillart

M.-H. Chopinet, J. Grynberg, M.J. Toplis

Joint Unit CNRS/Saint-Gobain, Aubervilliers (France)

SAINT-GOBAIN

Collaborations

Glass MH Chopinet D. Dalmas J. Grynberg S. Papin W. Woelffel (CNRS/SG, SGR)

M. Toplis (OMP Toulouse) D. Bouttes D. Vandembroucq (PMMH, ESPCI)

Tomography acquisition

E. Boller (ID 19) M. Di Michiel (ID15a)

L. Salvo P. Lhuissier (Simap)

Reconstruction

S. Roux (LMT Cachan) F. Krzakala (ESPCI) M. Mézard (LPTMS Orsay)

H. Talbot E. Chouzenoux (Paris-Est) A. Mirone(ESRF)

Image processing

H. Talbot (ESIEE) L. Moisan (Paris V)

G. Varoquaux (INRIA Saclay)

ANR project EDDAM (MATEIS, INSA Lyon)

3 Reactions in the $Na_2CO_3 - SiO_2$ system

3 Reactions in the $Na_2CO_3 - SiO_2$ system

4 Evolution of calcium carbonate

flames heat up the "batch blanket"

reactions produce molten glass

raw materials enter the furnace

Producing homogeneous glass is difficult

Defects

- Unmolten grains, bubble, chemical gradients...
- How are they related to the grain sizes, the temperature path, etc.?

in-situ X-ray tomography

SEM imaging

Literature: TGA in-situ XRD in-situ NMR

Electrical conductivity

Tools for studying glass batch melting in SGR

X-ray diffraction

Thermal analyses:

Static melting

Raman spectroscopy

2 In-situ tomography

3 Reactions in the $Na_2CO_3 - SiO_2$ system

4 Evolution of calcium carbonate

furnace

TD19

ESRF

sample -----

camera

15 s

camera

TD19

ESRF

111

17

Reactive melting of glass raw materials

http://www.youtube.com/watch?v=pPyG fEee o

Visualizing glass melting from the inside

 $T = 760^{\circ} \text{ C}$

 $T = 799^{\circ} \text{ C}$

 $T = 820^{\circ} \text{ C}$

 $T = 835^{\circ} \text{ C}$

 $T = 850^{\circ} \text{ C}$ $T = 860^{\circ} \text{ C}$ $T = 877^{\circ} \text{ C}$

 $\begin{array}{l} \Rightarrow \text{ huge amounts of} \\ (\text{noisy}) \text{ data to process...} \\ O(100 \text{Gb}) \text{ for one} \\ \text{experiment} \end{array}$

Courtesy Luc Salvo

Absorption and phase contrast

Absorption reconstruction

Phase reconstruction (Paganin algorithm, single distance)

Datasets and issues

- In-situ images : speed vs. quality tradeoff. Noisy images, poor contrast, artifacts...
- Huge datasets : O(1) Go / image $\times \#$ images in timeseries.
- Complicated system : what information do we want?

Quantitative image processing

- Denoising
- Segmentation of the phases
- Tracking objects, measuring contacts statistics...

3 Reactions in the $Na_2CO_3 - SiO_2$ system

4 Evolution of calcium carbonate

The $Na_2O - SiO_2$ system

Starting from Na_2CO_3 and not from Na_2O : where/how does the system enter the phase diagram ?

• T < 865° C : solid-state reactions (Turner, Wilburn, ...)

 $\mathrm{Na_2CO_3} + \mathrm{SiO_2} \rightarrow \mathrm{Na_2SiO_3} + \mathrm{CO_2}$

 $\mathrm{Na_2SiO_3} + \mathrm{SiO_2} \rightarrow \mathrm{Na_2Si_2O_5}$

• $T \ge 865^{\circ}$ C : reactions between molten $\mathrm{Na_2CO_3}$ and $\mathrm{SiO_2}$.

Both transformations mechanisms of $\rm Na_2CO_3$ can be observed Reaction in solid and liquid state

Volume fraction of sodium carbonate + crystalline silicates ternary batch, 5 $\mathrm{K.min}^{-1}$ ramp

Both transformations mechanisms of $\rm Na_2CO_3$ can be observed Reaction in solid and liquid state

Volume fraction of sodium carbonate + crystalline silicates ternary batch, 5 $\mathrm{K.min}^{-1}$ ramp

Porous grains with a large specific area

Novacarb sodium carbonate

Porous grains with a large specific area

Novacarb sodium carbonate

A very reactive system in the solid-state

Formation of crystalline silicates :

 $Na_2CO_3 + SiO_2 \rightarrow Na_2SiO_3 + CO_2 \quad \text{metasilicate NS}$

 $Na_2SiO_3 + SiO_2 \rightarrow Na_2Si_2O_5 \quad \mbox{disilicate } NS_2$

Solid-state reaction at interspecies contacts

36% Na₂CO₃, 74% SiO₂, 760 °C

Reaction without contact??

36% Na₂CO₃, 74% SiO₂, 730 °C

Tracking individual grains to learn reaction paths

Sodium carbonate, blue and yellow : two sand grains, white : sodium silicates

 \Rightarrow sodium carbonate is extremely reactive and mobile : "semi-local" process

Reaction without contact??

Reaction without contact??

$Na_2CO_3 \rightarrow "Na_2O" + CO_2 \quad K \ll 1 (10^{-7})$

Reaction without contact??

$\mathrm{Na_2CO_3} \rightarrow \mathrm{Na_2O} + \mathrm{CO_2}$

 Na_2O reacts with silica surface

 $\mathsf{Na_2O} + \mathsf{SiO_2} \to \mathsf{Na_2SiO_3}$

Reaction without contact??

${\rm Na_2CO_3} \rightarrow {\rm Na_2O} + {\rm CO_2}$ decomposition depends on ${\rm CO_2}$ partial pressure

low $\rm CO_2$ partial pressure : vapor-phase reactions are favored Small samples in tomography $\rightarrow \rm CO_2$ is easily removed.

high ${\rm CO}_2$ partial pressure : ${\rm Na}_2{\rm CO}_3$ decomposes only when in contact with silica.

Solid-state reactions

 800° C, 4× speed-up (scans of 2s every 6s)

Raman + XRD \rightarrow chemical / crystalline composition of the system

Raman + XRD \rightarrow chemical / crystalline composition of the system

Better homogeneity when solid-state reactions have been favored.
Raman + XRD \rightarrow chemical / crystalline composition of the system

Better homogeneity when solid-state reactions have been favored. Can it be explained by the spatial distribution of sodium silicates ?

Reactions above the melting point of Na₂CO₃

900° C, 4× speed-up (scans of 1s every 6s)

3 Reactions in the $Na_2CO_3 - SiO_2$ system

The $Na_2CO_3 - CaCO_3$ system

Kracek

Possible formation of a double carbonate

Also possible : calcination of CaCO₃

Coll. S. Papin (SGR), G. Matzen, E. Véron (CEMHTI)

■ Mixture of the two carbonates (50/50) : significant reaction

Evolution of calcium carbonate in a ternary batch

Two very different reaction paths

depending on contacts with sodium carbonate

Ternary batch 75%SiO₂ 13%Na₂CO₃ 12%CaCO₃ : < 1 one contact with Na₂CO₃ for CaCO₃ grains (monodisperse grains)

Double carbonate path : contacts Na₂CO₃ - CaCO₃ \rightarrow formation of a crystalline double carbonate.

760°C

25°C

760 °**C**

Evolution of calcium carbonate in a ternary batch

Two very different reaction paths

depending on contacts with sodium carbonate

$\begin{array}{l} \mbox{Calcination path}: \mbox{no contacts with Na_2CO_3}\\ \mbox{CaCO}_3 \rightarrow \mbox{CaO} + \mbox{CO}_2$ formation of refractory calcium oxide} \end{array}$

A clue for explaining chemical segregation?

Bubbles are created as a result of the production of melts and the deconnexion of the granular network : open pores between grains are closed down by the melts.

 \Rightarrow the initial distribution of bubble sizes is partially determined by the geometry of the granular packing

Need for faster acquisitions to follow bubbles creation and evolution.

Domain coarsening in phase-separating glasses

PhD of David Bouttes

 Barium-borosilicate glass
Phase-separation in liquid state (1000 - 1400° C)

ID19

t = 17 min t = 25 min t = 42 minEvolution of the shape of the domains

Hydrodynamical regime

Conclusions

- In-situ tomography : a great technique for studying glass melting
 - Quantitative data on transformations
 - Rich source of inspiration
 - Needs to be coupled with other techniques

The technique is still developing

- Towards faster and faster imaging
- Challenging data processing
- Could in-situ tomography be used to study other systems in glass science?

Thank you for your attention!

