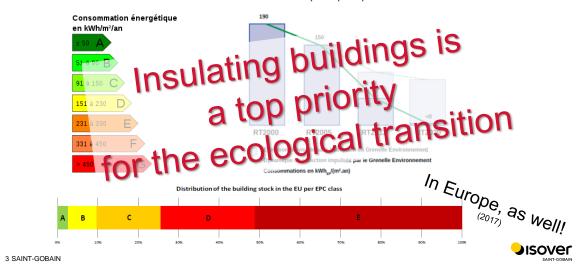


REDUCING ENERGY USES IN BUILDINGS AS A PRIMARY TARGET Overall energy consumption in France

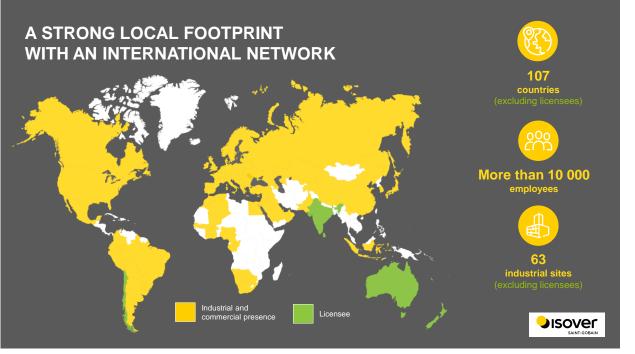


2 SAINT-GOBAIN

REDUCING ENERGY USES IN BUILDINGS AS A PRIMARY TARGET

Solutions do exist!

Évolution des exigences réglementaires de consommation énergétique des bâtiments neufs : une rupture opérée par le Grenelle Environnement

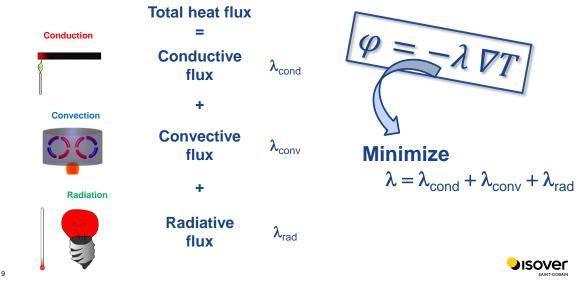


ISOVER manufactures and supplies high performing **insulation solutions** to address a variety of markets in buildings, transportation and industrial applications.

ISOVER provides **wellbeing**, **energy performance and fire safety** while helping to protect the environment.

A MULTI-APPLICATIONS OFFER

- Marine and offshore
- 2. HVAC Heating, Ventilation & Air Conditioning
- 3. Trains


1.

- 4. Automotive
- 5. Flat roofs insulation and waterproofing
- 6. Appliances (cooking ovens, washing machines...)
- 7. Basements
- 8. Saunas
- 9. Floors and ceilings
- 10. Sarking, pitched roofs
- Internal insulation, partition walls
 ETICS (External Thermal Insulation Composite Systems),
- ventilated facade, cavity walls 13. Thermal solar collectors
- 14. Industry

HOW TO DESIGN AN INSULATING MATERIAL?

Basics of heat transfer

HOW TO DESIGN AN INSULATING MATERIAL?

A MULTI-MATERIAL OFFER

Rolls, panels, pipe sections, blowing wool...

Panels, rolls, wired mats, pipe sections

COMPLEMENTARY OFFER

PIR & XPS PANELS

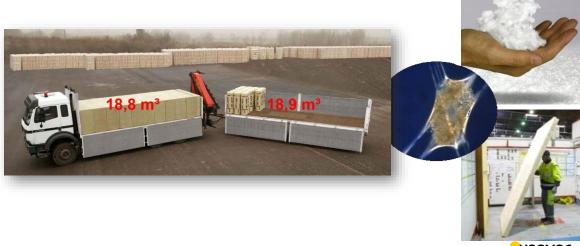
Flexible and dense panels

Accessories, vapor and wind barriers

11 11 ULTIMATE™: Unique insulation solution lighter than standard stone wool with similar fire performance

IN A NUTSHELL, GLASS WOOL IS MADE OF...

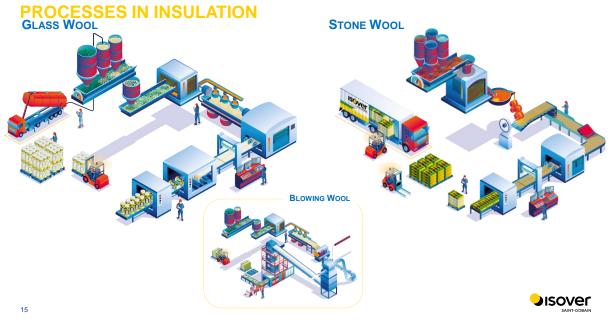
98% air in volume


95% glass fibres in mass5% binder

others as traces

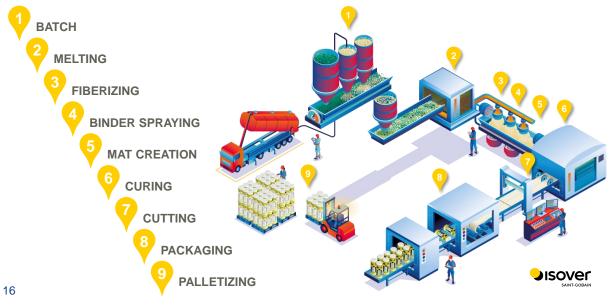
THE BINDER

Organic material that gives glasswool its mechanical properties



13

13


INSULATION GLASSES AMONG INDUSTRIAL GLASSES

						ertificate for iosolubility
Main Oxides	Flat glass	Container glass	Glass wool	Stone wool	E Glass	
SiO ₂	72	70	65	43	55	
Na ₂ O+K ₂ O	14.5	14	16.5			
CaO	10	10	7	39	21	
MgO	4	2	3	4	1	
B ₂ O ₃			4.5		7	
Al ₂ O ₃	0.5	2	3	12	15	
Others	Fe ₂ O ₃	Fe ₂ O ₃ Cr ₂ O ₃ , MnO				
		Cr ₂ O ₃ , MIIO				

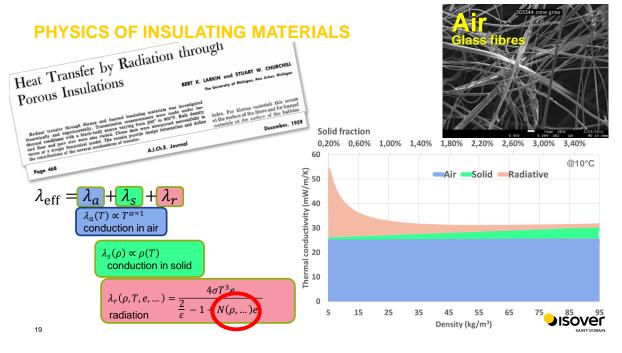
15

GLASS WOOL PRODUCTION PROCESS

Candy floss at 1000°C, 2000 rpm, 30 tpd !

JISOVEr

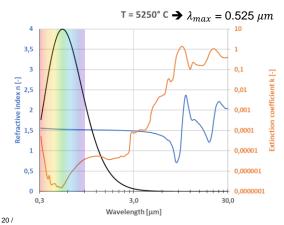
17


17

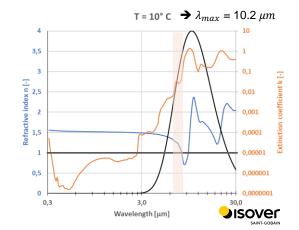
SCIENTIFIC CHALLENGES RELATED TO GLASS WOOL

A glass-savvy selection

- Glass wool is a remarkable material but / because it's a glass...
 - Energy intensive
 - Brittle
 - Low reactivity at room temperature, highly corrosive at melting temperature
 - Infinitely recyclable
- Science is necessary to enhance applications
 - Improve performance in use: thermal in the infrared
 - Improve comfort during installation: reduce dust
 - Improve sustainability: predict biosolubility, facilitate recyclability, increase spinner lifetime

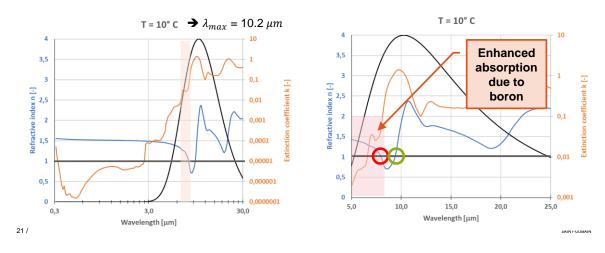


19

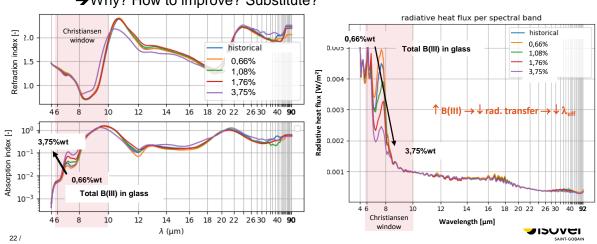

SCIENTIFIC CHALLENGES TO IMPROVE PERFORMANCE

Optics in the infrared

• Glass purely refractive in the visible Wien's displacement law: $\lambda_{max} T = 2898 \ \mu m \ K$


• The unlucky Christiansen window

SCIENTIFIC CHALLENGES TO IMPROVE PERFORMANCE


Optics in the infrared

• The unlucky Christiansen window

21

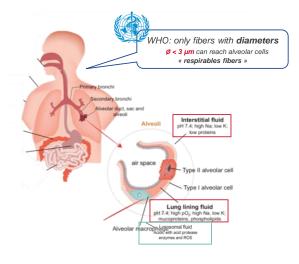
THE ROLE OF B(III) IN GLASS WOOL CONDUCTIVITY

Only absorption in Christiansen window matters, and only B(III) only
 →Why? How to improve? Substitute?

SCIENTIFIC CHALLENGES TO IMPROVE COMFORT

The mechanics of glass wool: how to avoid brittleness and control the creation of dust

Intense compression
 → some fibres fracture


What is the mechanics behind?

- How many do fracture?
- How to avoid/reduce?
 - Lubrication? Glass surface?
 - Process?
 - Glass composition?

SCIENTIFIC CHALLENGES TO PREDICT BIOSOLUBILITY

A short reminder on biosolubility

Only thinner fibers can reach deep lung alveolar cells

- Dissolution : glass hydrolysis by water
- **Biosolubility** : dissolution modified by proteins, complexing agents
- Two types of mechanisms:
 - Dissolution inside pulmonary fluids <u>pH 7,4</u>
 → glasswools fibers
 - Phagocytose of fibers with alveolary macrophages <u>pH 4,5</u>
 → stonewools and Ultimate fibers

THE CLP REGULATION

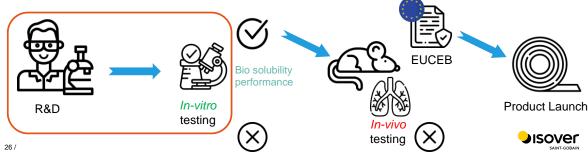
A legal framework for commercialising fibres in EU

- European Classification, Labelling and Packaging of chemical substances and mixtures
- For mineral fibres
 - Cat.1A : known to have carcinogenic potential for humans (asbestos)
 - Cat. 1B : presumed to have carcinogenic potential for humans (refractory ceramic fibers)
 - Cat. 2 : suspected to have carcinogenic potential for humans: glasswool & stonewool

Exemption of Cat. 2 if validated by certified in-vivo test Compulsory for all fibres produced in Europe since 1997

All fibres sold in EU since 1997 have been validated ... a "tour de force" in formulation

lsover


25

TESTING BIOSOLUBILITY: IS IT POSSIBLE TO DO BETTER?

An alternative to killing rats?

• For 3 months, rats breath fibres, sacrified, lungs analyzed..

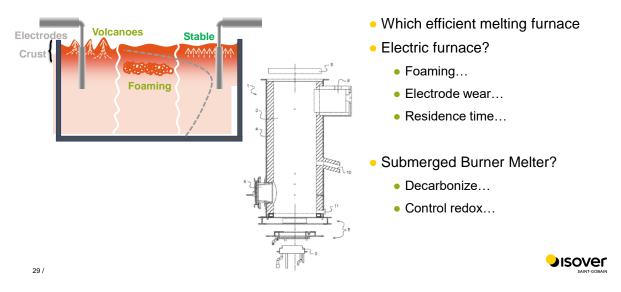
- Measure #fibres, determine $T_{1/2}$; test passed if $T_{1/2} \le 40$ days
- How to formulate a glass which fibres would pass the in-vivo test?
 - How to design an in-vitro test ←→ the in-vivo test ?

SCIENTIFIC CHALLENGES TO IMPROVE SUSTAINABILITY

Recycling glass wool is necessary

WHAT DO DECONSTRUCTION WASTES LOOK LIKE?

Not exactly a glass maker raw material

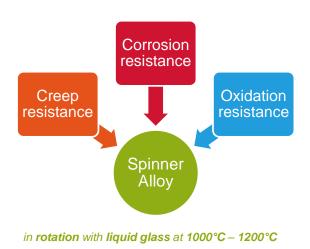


- Pollutants galore!
 - Ceramics / Stones / Porcelain
 → Measure amount?
 → Predict digestion?
 - Iron & other heavy metals
 // Poorly melt
 Extract ? Melt ?
 - Aluminium // + SiO₂ \rightarrow Al₂O₃ + Si (m) \rightarrow oxidisers?
 - Sulfate
 - Organic materials C
 → efficient & effective oxidation ?

SCIENTIFIC CHALLENGES TO IMPROVE SUSTAINABILITY

Fundamental limitations in the recycling of glass wool

29


SCIENTIFIC CHALLENGES AT FIBERIZING

...it is eventually a material problem

WHICH METALLURGY TESTS TO PROBE SUPER ALLOYS...

...in contact with molten glass?

In the lab
 ∄ correlation corrosion – creep

In the plant
 correlation corrosion – creep

→ very difficult to develop new alloys

- On going work
 - Mechanism at play between glass / alloy / alloy structure
 - Design new test / bench test

31

31

GLASSWOOL IS NOT THAT SIMPLE

Many open technical questions linked to real scientific problems

- Improve performance
 - How to enhance and achieve absorption in the infrared?
 - How to control brittleness?
- Anticipate reactivity
 - How to test and predict biosolubility...
 - ...while maintaining hydrolytic resistance for decades?
- Develop sustainability
 - How to facilitate recyclability?
 - Design materials that sustain contact with molten glass

Thanks to G Barba Rossa A Rony M Jacquet Q Hérault V Grigorova-Moutiers S Gandon

