Guides d'onde à base de films chalcogénures pour l'optique intégrée infrarouge

<u>C. Vigreux</u>

M. Vu Thi, R. Escalier, A. Pradel

Institut Charles Gerhardt Montpellier, Equipe « Chalcogénures et Verres », UM2-CNRS, Montpellier, France

ajustées pour des applications spécifiques

matériaux amorphes

Métrologie de l'environnement

Micro-capteurs pour la détection de gaz polluants CO₂: 4,2 μm, SO₂ : 8,7 μm, CO: 2,3 et 4,6 µm, ...

Viens et al. J. Lightwave Techno.17(7), 1184 (1999)

Amplification optique

Guides d'onde IR actifs, lasers

Optique intégrée IR

Interférométrie spatiale

Composants pour la détection et l'analyse des exo-planètes

Micro-capteurs pour l'analyse des milieux biologiques Wilkinson et al., SPIE - Advanced Materials and Optical Systems for Chemical and Biological Detection, Boston (2007)

Biologie

 O_3

Développement de guides d'onde canaux à base de films chalcogénures

Différentes technologies

Photolithographie et gravure

Obtention de films tellurures épais aux propriétés ajustables

Différentes voies de dépôt

La plus utilisée

Evaporation thermique

Facile à mettre en oeuvre et vitesse de dépôt élevée

Mais peu adaptée aux couches multi-éléments

Pulvérisation cathodique RF

Ablation laser

Adaptées aux couches multi-éléments

Mais nécessité de fabriquer des cibles et peu adaptées aux dépôts sur des substrats larges Co-évaporation thermique

Mêmes avantages que l'évaporation thermique mais adaptée aux couches multi-éléments

Méthode qui permet de varier facilement la composition des couches

Trois systèmes étudiés

Principaux résultats

Obtention de films épais et homogènes

receca substrat X 8830

TeGeSe

lomogénéité en épaisseur

Obtention de films épais et homogènes

TeGeGc

TeGeSe

Homogénéité en composition

en surface (EPMA)

Obtaining of thick homogeneous films

Obtention de films avec des compositions très variées

TeGe _____

TeGeGa

TeGeSe

Obtention de films aux propriétés ajustables

Obtention de films aux propriétés ajustables

Gravure profonde des films tellurures

Différentes voies de gravure

Gravure humide

Facile à mettre en oeuvre et très sélective

mais attaque isotrope

lon photoresist Film à graver

Gravure sèche

Anisotrope mais non sélective

Gravure ionique réactive

Combine 2 effets complémentaires:

- Attaque chimique qui permet une bonne sélectivité
- Gravure physique qui augmente le caractère anisotrope

Usinage ionique

Equipement doté d'un porte-substrat tournant mais aussi pouvant être tilté, de sorte à obtenir des profils d'angle contrôlés Gravure ionique réactive : 2 systèmes étudiés

TeGe

TeGeSe

Principaux résultats

Obtention de profondeurs de gravure importantes

Obtention de marches quasi-verticales

TeGe 11.7μm

TeGeSe

Possibilité limitée de varier l'angle des marches

Flancs en "escaliers"

TeGe

Tout premiers résultats

Obtention de marches à angle contrôlé

Ouvre des possibilités complémentaires de la RIE

Application visée

Interférométrie spatiale

Objectif :

Recherche de planètes extra-solaires isotypes de la Terre

→ Spectrométrie de l'atmosphère des exo-planètes pour détecter les signatures des molécules de H_2O , O_3 and CO_2

Problèmes :

et 19,6 µm

• Fort contraste entre les planètes et leur étoile mère

[6 – 20 µm]

Application visée

Interférométrie spatiale

Objectif :

Recherche de planètes extra-solaires isotypes de la Terre

→ Spectrométrie de l'atmosphère des exo-planètes pour détecter les signatures des molécules de H_2O , O_3 and CO_2

Problèmes :

 Faible séparation angulaire entre la planète et son étoile mère

Application visée

Interférométrie spatiale

Objectif :

Recherche de planètes extra-solaires isotypes de la Terre

→ Spectrométrie de l'atmosphère des exo-planètes pour détecter les signatures des molécules de H_2O , O_3 and CO_2

Cahier des charges

Solution :

• Fabriquer un filtre modal infrarouge capable d'un taux de réjection de la lumière de 10⁻⁶

Design des guides d'onde

Cahier des charges :

- Guidage monomode entre 6 et 20 µm
- Rendement de couplage élevé

Préparation des faces d'entrée et sortie

Réalisation de "sandwich" constitués d'une dizaine d'échantillons

Polissage fin des faces

Caractérisation

Bon confinement de la lumière dans toute la gamme spectrale

Démonstration du guidage à 10,6 µm

Caractérisation

Mise en évidence de la capacité de filtrage modal à 10,6 µm

Système d'injection

Interféromètre de Mach-Zehnder

Réjection < 6. 10^{-5}

Design alternatif

Avantages:

- Comportement monomode dans toute la gamme spectrale de 6 à 20 µm
- Très bon rendement de couplage

Challenge : être capable de recouvrir par un superstrat

Premiers tests de recouvrement

Interface substrat / couche de coeur

Usinage ionique

Application visée

Métrologie de l'environnement

Challenge:

• Fabriquer un micro-capteur de CO₂

Contrôle des rejets des véhicules

Contrôle de la qualité de l'air dans l'habitacle

Cahier des charges

- Guides canaux devant fonctionner à 4,2 µm et au moins jusque 16 µm
- Guides canaux fonctionnant aussi à 1,3 et 1,55 µm pour des tests préliminaires sur les bancs classiques

Contrôle des fuites de CO₂ dans les sites de stockage géologique

Channel waveguides to be designed

Cahier des charges :

Premier objectif : réaliser des guides monomodes à 1,55 µm
Substrat : silicium

Principaux résultats

 $Te_{29}Ge_{20}Se_{51}$ $Te_{22}Ge_{20}Se_{58}$

Bon confinement de la lumière : démonstration à 1,55 µm

Conclusions

Interférométrie spatiale

- fabrication de guides canaux pour les bandes spectrales $[6 11 \ \mu m]$ and $[10 20 \ \mu m]$:
 - qui transmettent la lumière de 6 à 20 µm
 - qui sont monomodes (démonstration à 10,6 µm)
 - qui peuvent servir de filtre modal à 10,6 µm
- conception de guides enterrés pour la bande spectrale entière [6 – 20 µm]
 - design très prometteur -> objectif de la phase 3 du projet
 - demonstration de la possibilité de recouvrement par un superstrat

Métrologie de l'environnement

- fabrication de guides rib pour la bande spectrale $[1 16 \,\mu\text{m}]$:
 - qui presentent un comportement monomode à 1,55 µm
 - avec des pertes de propagation de 0,5 1,8 dB.cm⁻¹

Annie Pradel Raphaël Escalier Eléonore Barthélémy Mai Vu Thi

Thierry Billeton

Frédéric Pichot Jean Lyonnais Jean-Marie Peiris Claude Merlet Joël Couve

IMEP-LAHC

Jean-Emmanuel Broquin

Lionel Bastard

Institut de

UMR CNR5 de Rennes

Volker Krischner

THALES Marc Barillot Stéphane Ménard

Merci pour votre attention

Remerciements