

J.-L. Hazemann Institut Néel, CNRS Grenoble

Haute dilution et haute résolution en spectroscopie d'absorption X dans le domaine de l'environnement et les géosciences: état de l'art et nouvelles perspectives sur la ligne FAME à l'ESRF

X-ray Absorption Spectroscopy

Eléments sondés [4 - 40keV] seuil d'absorption K et L₃

																		VIII
1	1																	2
	Н	- 11												IV	V	VI	VII	He
2	3	4											5	6	7	8	9	10
	Li	Be											В	С	N	0	F	Ne
3	- 11	12											13	- 14	15	16	17	18
	Na	Mg											AL	Si	Р	S	CI	Ar
4	19	20	21	22	23	24	25	26	27	28	29	30	- 31	31	33	34	35	36
	К	Ca	Sc	Ti	V.	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Bh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
6	55	56	*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba		Hf	Та	W.	Re	Os	Ir	Pt	Au	Hg	ТІ	РЬ	Bi	Po	At	Bn
7	87	88	88 **	104	105	106	107	108	109	110	111	112		114		116		118
	Fr	Ra		Bf	Db	Sg	Bh	Hs	Mt	Ds	Uuu	Uub		Uuq		Uuh		Uuo
			* 6	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Ho	Er	Tm	Yb	Lu
		,	** 7	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
			'	A	ТЬ	D.		A la	Du	A	0-	DL	04	Ea	Em	5.4.4	NI-	1.

Proux O. et al., Physica Scripta 115, 970-973 (2005)

Domaines Scientifiques

Contexte: expériences XAS sur échantillons naturels

- Elément étudié: faible concentration
- Matrice: signaux parasites majoritaires

Flux maximum sur l'échantillon

- la taille minimum du faisceau
- Optimisation de la mesure en fluorescence

Stations d'expériences

Utilisateurs Nationaux & Internationaux

150 publications40 séminaires invités55 thèses et HDR

Période 2005-2012

Ecole de formation depuis2004 (A.N.G.D. or ANF CNRS)

Environment Echantillon

- Limitation des effets d'irradiation (biologie, sciences environnementales...)
- Transition de phase (Science des matériaux...)
- Etude in operando en catalyse, et électrochimie (T° + gaz)
- Four haute température
- Haute pression (DAC, cellule hydrothermale...)
- Tête goniométrique

Limite de concentration

Hazemann et al. High-resolution spectroscopy on an X-ray absorption beamline (2009) J. of Synchrotron Radiation

concentration en ppm ($\mu g/g$ ou $\mu M/I$)

Le chrome Cr³⁺ en impureté dans les minéraux et leur couleur

Spectroscopie d'absorption X et calculs DFT

EXAFS : Cr-O équivalente le long de la solution solide

Spectres XANES + calculs DFT indiquent la deuxième sphère de coordination du Chrome (c.a.d. les cations divalents comme Mg²⁺ or Ca²⁺ont une influence sur:

- 1) La distance Cr-O
- 2) la structure électronique de la liaison chimique Cr-O

Juhin A., Calas G., Cabaret D., Galoisy L., Hazemann J-L. (2007) *Physical Review B* **76** 054105 Juhin A., Calas G., Cabaret D., Galoisy L., Hazemann J-L. (2008) *American Mineralogist* **93** 800-805 Etude cinétique in situ par Spectroscopie d'absorption X de verres borosilicatés pour la vitrification des déchets nucléaires: influence de la substitution de Na par Ca ou B

Cochain B. et al., Mater. Res. Soc. Symp. Proc. 1124, 1124-Q03-02 (2009)

Les limites actuelles des détecteurs

- Superposition des signaux de fluorescence et autres
- Difficulté intrinsèque pour diminuer la limite de détection en dessous de la dizaine de ppm

exploitation des expériences XAS

- Calculs de structure électronique, XANES…
 - de + en + de codes
 - de + en + « user-friendly »
 - Mesures expérimentales doivent être de mieux en mieux résolus en énergie
 - Résolution des photons incidents
 - Résolution de la détection

Mesures en fluorescence par cristal analyseur

Développement d'un spectromètre multi analyseurs sur FAME

- 5 cristaux
- Résolution en énergie: ~ 1 eV

Hazemann et al. High-resolution spectroscopy on an X-ray absorption beamline (2009) J. of Synchrotron Radiation

Llorens et al. High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an X-ray Absorption Spectroscopy beamline (2012) *Review of Scientific Instruments*

Spectromètre à Cristaux Analyseurs

Llorens et al. High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an X-ray Absorption Spectroscopy beamline (2012) *Review of Scientific Instruments*

Meilleure résolution des structures XANES

Absorption

Hämäläinen K. et al. (2003) Phys. Rev. Lett. 68 045122

Spectre d'emission (XES)

- Electronic transitions
 - $K\alpha_1 \quad 2p_{3/2} \rightarrow 1s$ • $K\alpha_2 \quad 2p_{1/2} \rightarrow 1s$
 - $K\beta_1$ $3p_{3/2} \rightarrow 1s$

•
$$K\beta_3$$
 $3p_{1/2} \rightarrow 1s$

Kβ['] spin orientation

K
$$β_2$$
 4p → 1s
K $β_5$ 3d → 1s

•
$$K\beta$$
" 2s _{ligand} \rightarrow 1s _{metal}

- Sensibilité chimique
- Identification du type de ligand

Spectre d'émission

Sensibilité à la nature des ligands

Seuil K du Cr

Safonov et al., J. Phys. Chem. B 110 23192 (2006)

Vitrocéramique oxysulfure/oxyfluorure à faible énergie de phonon dopés au Cr

Questions: quelle est la nature des ligands autour de Cr (0,05 mol Cr_2O_3)

Calculs DFT reproduisent parfaitement l'expérience

Ils montrent que :

- Kß" transitions entre les orbitales du Cr hybridées avec les états 3s de S ou 2s de O
- Kß2.5 transitions entre les orbitales du Cr hybridées avec les états 3p de S ou 2p de O

IMPMC (Paris) Benjamin Cochain, Laurent Cormier, Guillaume Radtke ANR GCWEB

Mesures en fluorescence: mesures du profil Inelastique

- Photons incidents d'énergie E
- Diffusion inélastique des photons: E_{inél.}<E
- Energie transférée: E-E_{inél.}
- Si E_{transf.} = niveau d'énergie

✓ seuil d'absorption

✓ pour les él^{ts} légers

Mesures en fluorescence: mesures XRS à 10 keV

• Seuil K de l'O de l' H_2O Seuil K du carbone

Hazemann et al. High-resolution spectroscopy on an X-ray absorption beamline (2009) J. of Synchrotron Radiation

La spectroscopie haute résolution

- Intérêts immédiats: la très haute dilution
 - Très bonne sélectivité des raies de fluorescence
 - d'un même élément (K_{$\alpha 1$} / K_{$\alpha 2$}...)
 - de plusieurs éléments
 - Pas de saturation due à une fluorescence « parasite »
- Dans un deuxième temps: nouvelles sensibilités
 - Résolution en énergie
 - Haute Résolution (< ΔE_{1s}), meilleure sensibilité au XANES
 - Spectres d'émission séparation des ligands proches
 - Possibilité de faire des mesures des éléments légers

Quelques dates...

- 1^{er} septembre: dépôt de projet ESRF
- 15 septembre: dépôt de projet CRG via SOLEIL
- 15 février: dépôt de projet CRG via SOLEIL
- 1^{er} mars: dépôt de projet ESRF

http://www.esrf.eu/UsersAndScience/Experiments/CRG/BM30B

