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1. Scientific issues in two-phase flows
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Figure 1: Fluid dynamics close to a contact line.

◮ The velocity gradient is:

∂u

∂z
≈ U

h(x)
=

U

θx
(1)

◮ The viscous dissipation is given by1:

Φη = η

∫ R

ǫ

(
∂u

∂z

)2

hdx = η

∫ R

ǫ

(
U

h

)2

hdx = η
U2

θ
ln

(
R

ǫ

)
. (2)

1P. G. De Gennes: Wetting: Statics and dynamics, in: Rev. Mod. Phys.

57.3 (1985), pp. 827–863.
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1. Scientific issues in two-phase flows

◮ To remove the singularity:

Figure 2: Precursor film2.

2P.-G. De Gennes/F. Brochard-Wyart/D. Quéré: Gouttes, bulles, perles et

ondes, Paris 2005.
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1. Scientific issues in two-phase flows

◮ To remove the singularity:

u

l s

Figure 3: Slippage of fluids on wall3.

3L. M. Hocking: A moving fluid interface. Part 2. The removal of the force

singularity by a slip flow, in: J. Fluid Mech. 79.02 (1977), pp. 209–229.
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1. Scientific issues in two-phase flows

◮ To remove the singularity:

Figure 4: Contact line of diffuse interface4.

4P. Seppecher: Moving contact lines in the Cahn-Hilliard theory, in: Int. J.

Engng Sci. 34.9 (1996), pp. 977–992.
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2. Basics of the phase field theory I

◮ Each phase is marked by a “phase field” or “order

parameter”: ϕ.

◮ ϕ = 1 in phase 1 (ρ1, η1) and ϕ = −1 in phase 2 (ρ2, η2).

Figure 5: Shear flow with two phases.

ρ =
ρ1 + ρ2

2
+

ρ1 − ρ2

2
ϕ. (3)

◮ The free energy is written as follows5
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2. Basics of the phase field theory II

J. D. van der

Waals

(1837-1923).

F [ϕ] =

∫

Ω

[
Ψ(ϕ) +

k

2
||∇ϕ||2

]
dV . (4)

◮ Ψ(ϕ) is a double-well potential.
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Figure 6: Example of a double-well potential:

Ψ = k(1 − ϕ2)2/(4ζ2).

5J. D. van der Waals: The thermodynamic theory of capillarity under the

hypothesis of a continuous variation of density, in: Verhandel. Konink. Akad.

Weten. 1 (1893), pp. 1–56.
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2. Basics of the phase field theory

◮ At equilibrium, F [ϕ] has to be minimal.

δF [ϕ] =

∫

Ω

(
dΨ

dϕ
− k∇2ϕ

)
δϕdV +

∫

δΩ

∂ϕ

∂n
δϕdS. (5)

◮ Consequently:

µ(ϕ) =
dΨ

dϕ
− k∇2ϕ = 0, ∀x ∈ Ω, (6)

k
∂ϕ

∂n
= 0, sur δΩ. (7)

◮ µ(ϕ) is the chemical potential.
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2. Basics of the phase field theory

◮ In 1-dimension and with the previous double-well potential,

the phase field is given by:

ϕ(x) = tanh

(
x√
2 Cn

)
, (8)

x =
x

L
, (9)

Cn =
ζ
L
, Cahn number. (10)

◮ The surface tension is then defined by

σ =
k

L

∫ ∞

−∞

(
dϕ

dx

)2

dx =
2
√

2k

3ζ
. (11)
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2. Basics of the phase field theory

◮ Outside the equilibrium, Cahn and Hilliard6 proposed

∂ϕ

∂t
= −∇ · J, (12)

J = −M∇µ, (13)

µ(ϕ) =
dΨ

dϕ
− k∇2ϕ. (14)

◮ Time behavior of the phase field due to the diffusion of the

chemical potential.

◮ Investigating spinodal decomposition.

6J. W. Cahn/J. E. Hilliard: Free Energy of a Nonuniform System. I.

Interfacial Free Energy, in: J. Chem. Phys. 28.2 (1958), pp. 258–267.
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2. Basics of the phase field theory

Numerical simulation of a spinodal decomposition in 2D,

Cn = 10−2.
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2. Basics of the phase field theory I

              
              
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
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Figure 7: Contact line between two fluids and a wall. The static

contact angle is θs.

F [ϕ] =

∫

Ω

[
Ψ(ϕ) +

k

2
||∇ϕ||2

]
dV +

∫

∂Ωw

fw (ϕ)dS. (15)
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2. Basics of the phase field theory II

◮ The minimization of F [ϕ]7

µ(ϕ) =
dΨ

dϕ
− k∇2ϕ = 0, ∀x ∈ Ω, (16)

L(ϕ) = k
∂ϕ

∂n
+

dfw

dϕ
= 0, on ∂Ωw . (17)

J. W. Cahn

(1928-2016).

fw (ϕ) = −σ cos θs
ϕ(3 − ϕ2)

4
, (18)

k
∂ϕ

∂n
=

3(1 − ϕ2)σ

4
cos θs, on ∂Ωw .(19)

7J. W. Cahn: Critical point wetting, in: J. Chem. Phys. 66.8 (1977),

pp. 3667–3672.
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2. Basics of the phase field theory

◮ Outside the equilibrium, creation of force proportional to

µ∇ϕ.

◮ Stokes equations:

∇ · u = 0, (20)

−∇P +∇ · [2η(ϕ)D(u)] + ρ(ϕ)g + µ∇ϕ = 0, (21)

◮ Cahn-Hilliard equation:

∂ϕ

∂t
+∇ϕ · u = ∇ · [M(ϕ)∇µ(ϕ)], (22)

µ(ϕ) =
λ

ζ2

[
ϕ(ϕ2 − 1)− ζ2

∇
2ϕ

]
. (23)
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2. Basics of the phase field theory

◮ Under dimensionless form:

∇ · u = 0, (24)

−∇P +∇ · [2η(ϕ)D(u)] +
Bo

Ca
ρ(ϕ)g +

3

2
√

2 Ca Cn
µ∇ϕ = 0, (25)

∂ϕ

∂t
+∇ϕ · u =

1

Pe
∇

2µ(ϕ), (26)

µ(ϕ) = ϕ(ϕ2 − 1)− Cn
2
∇

2ϕ,(27)

◮ Dimensionless numbers:

Bo =
ρ1gL2

σ
, (28) Ca =

η1U

σ
, (29) Pe =

Uζ2L
Mλ

, (30)

Cn =
ζ

L
, (31) ρ̂ =

ρ2

ρ1
, (32) η̂ =

η2

η1
. (33)
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3. Numerical results of two-phase flows
❤3.1 Droplet shrinkage

◮ Study this effect of Cahn number on droplet shrinkage for

fluids at rest.

Figure 8: A static droplet in a liquid at rest.
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3. Numerical results of two-phase flows
❤3.1 Droplet shrinkage

Figure 9: a/a0 vs. t for three Cahn numbers.
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3. Numerical results of two-phase flows
❤3.1 Droplet shrinkage

◮ Small value of Cahn number prevents the shrinkage.

◮ According to Yue et al.8, the critical radius below which the

shrinkage occurs is

rc =
4

√
21/6

3π
V Cn, (34)

◮ rc = 0.7 for Cn = 10−1,
◮ rc = 0.6 for Cn = 5 · 10−2,
◮ rc = 0.4 for Cn = 10−2.

8P. Yue/C. Zhou/J. J. Feng: Spontaneous shrinkage of drops and mass

conservation in phase-field simulations, in: J. Comput. Phys. 223.1 (2007),

pp. 1–9.
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3. Numerical results of two-phase flows
❤3.2 Capillary rising
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Figure 10:

Geometry of the

circular tube.

◮ The diameter of the tube is used as

characteristic length.
◮ U chosen by balancing gravity ∼ viscous

forces ⇒ U = ρgD2/σ.

u = 0,
∂ϕ

∂n
=

(1 − ϕ2)
√

2 cos θs

2 Cn
,
∂µ

∂n
= 0, ∀x ∈ ∂ΩD, (35)

σ · n = 0,
∂ϕ

∂n
=

∂µ

∂n
= 0, ∀x ∈ ∂ΩN, top, (36)

σ · n = −(ρ̂+
1

2
)n,

∂ϕ

∂n
=

∂µ

∂n
= 0, ∀x ∈ ∂ΩN, bottom. (37)
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3. Numerical results of two-phase flows
❤3.2 Capillary rising

◮ A numerical example has been done with:

θs = 80◦, Bo = 1, Cn = 10−2, Pe = 102. (38)

◮ Initially, the heavy fluid (1) is below z = 0:

ϕ0(z, r) = − tanh

(
z√
2 Cn

)
. (39)
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3. Numerical results of two-phase flows
❤3.2 Capillary rising

Capillary rising of water in a tube with a static contact angle

equal to 4π/9.
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3. Numerical results of two-phase flows
❤3.2 Capillary rising

Figure 11: Contact line position as a function of time for θs = 80◦ and

Bo = 1.
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3. Numerical results of two-phase flows
❤3.2 Capillary rising

Figure 12: Geometry of the free surface, z vs. r , for θs = 80◦ and

Bo = 1.

24 / 33



3. Numerical results of two-phase flows
❤3.2 Capillary rising

Figure 13: z-axis velocity component v vs. r , over an horizontal line

localized right on the contact line.
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3. Numerical results of two-phase flows
❤3.2 Capillary rising

Figure 14: v/max(v) vs. x̃ ∼ 4
√

Pe right on the contact line for t = 2.5
for Bo = 1 and Pe = 50, 102 and 103.

◮ The diffusion layer of µ ∼ 1/ 4
√

Pe as shown in9.
9A. J. Briant/J. M. Yeomans: Lattice Boltzmann simulations of contact line

motion. II. Binary fluids, in: Phys. Rev. E 69 (3 2004), p. 031603.
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3. Numerical results of two-phase flows
❤3.3 Drop spreading on an horizontal wall
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Figure 15: Geometry of a spreading drop of fluid 1 in the initial

configuration.
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3. Numerical results of two-phase flows
❤3.3 Drop spreading on an horizontal wall

Drop spreading of a drop on a wall with θs = π/6, Cn = 10−2

and Pe = 102.
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3. Numerical results of two-phase flows
❤3.3 Drop spreading on an horizontal wall

(a) t = 0.1 (b) t = 0.5

(c) t = 1 (d) t = 5

Figure 16: Velocity field in the neighbourhood of the triple line.
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3. Numerical results of two-phase flows
❤3.3 Drop spreading on an horizontal wall

Figure 17: Drop shape during the spreading at different times.
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3. Numerical results of two-phase flows
❤3.3 Drop spreading on an horizontal wall

◮ The theory of the dynamics of triple line has been

described by Cox10:

g(θd , η̂)− g(θs, η̂) = −Ca
∗ ln ǫ, (40)

in which the function g(θ, η̂) is given by

g(θ, η̂) =

∫ θ

0

dα

f (α, η̂)
, (41)

with

f (α, η̂) =
2 sinα

{

η̂2
(

α2 − sin2 α
)

+ 2η̂
[

α(π − α) + sin2 α
]

+ (π − α)2 − sin2 α
}

η̂(α2 − sin2 α) [π − α+ sinα cosα] +
[

(π − α)2 − sin2 α
]

(α− sinα cosα)
.

(42)

10R. G. Cox: The dynamics of the spreading of liquids on a solid surface.

Part 1. Viscous flow, in: J. Fluid Mech. 168 (1986), pp. 169–194.
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3. Numerical results of two-phase flows
❤3.3 Drop spreading on an horizontal wall

Figure 18: The dynamic contact angle as a function of Ca
∗.

Comparison between the numerical result and the Cox’s theory with

ǫ = 10−1.
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4. Conclusion and perspectives

◮ Numerical solver to study two-phase flows using the phase
field theory11:

◮ Wetting properties of wall easy to take into account.

◮ Dynamics and temporal behaviors well described:
◮ Capillary rising in a tube;
◮ Drop spreading on a solid substrate.

◮ The physics is mainly controlled by two numbers:
◮ Cn ≤ 10−2; Pe ≥ 102.

◮ Introduce a “real” thermodynamics.

◮ Applications:
◮ Phase separation of oxide glasses;
◮ Bubble nucleation in glass former liquids.

11F. Pigeonneau/E. Hachem/P. Saramito: Discontinuous Galerkin finite

element method applied to the coupled Stokes/Cahn-Hilliard equations, in:

Int. J. Num. Meth. Fluids under revision (2018), pp. 1–28.
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