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Figure 1: Fluid dynamics close to a contact line.

» The velocity gradient is:

8u~ U U

ENWZH_X (1)

» The viscous dissipation is given by’

R 2 R 2 )
ou U U R

'P. G. De Gennes: Wetting: Statics and dynamics, in: Rev. Mod. Phys. @
57.3 (1985), pp. 827-863.
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1. Scientific issues in two-phase flows

» To remove the singularity:

Figure 2: Precursor film?.

2P-G. De Gennes/F. Brochard-Wyart/D. Quéré: Gouttes, bulles, perles et @

ondes, Paris 2005.
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1. Scientific issues in two-phase flows

» To remove the singularity:

|
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Figure 3: Slippage of fluids on wall®.

L. M. Hocking: A moving fluid interface. Part 2. The removal of the force @

singularity by a slip flow, in: J. Fluid Mech. 79.02 (1977), pg: 209229
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1. Scientific issues in two-phase flows

» To remove the singularity:
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Figure 4: Contact line of diffuse interface®.

*P. Seppecher: Moving contact lines in the Cahn-Hilliard theory, in: Int. J. @

Engng Sci. 34.9 (1996), pp. 977-992.
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2. Basics of the phase field theory |

» Each phase is marked by a “phase field” or “order
parameter’: .

» o = 1Iinphase 1 (p1, n1) and o = —1 In phase 2 (p2, n2).

Figure 5: Shear flow with two phases.

p1+p2  p1— p2
— . 3
p 5 T ¥ (3)

» The free energy is written as follows®




2. Basics of the phase field theory Il

Flel= [ [we)+ 51Vl av. @

» W(yp) is a double-well potential.

““““““““““““

J. D. van der

Waals
(1837-1923). LA A B

Figure 6: Example of a double-well potential:
V= k(1 —¢%)?/(4¢%).

°J. D. van der Waals: The thermodynamic theory of capillarity under the
hypothesis of a continuous variation of density, in: Verhandel. Konink. Akad.
Weten. 1 (1893), pp. 1-56.
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2. Basics of the phase field theory

» At equilibrium, F[y] has to be minimal.

SF[p] = /Q (Z:’; kV*© )5gpdV+ / 5¢ds. (5)

» Consequently:

avw

w(p) = — —kV=2p =0, Vx € Q, (6)
dy
Jyp
5 =0, suroQ. (7)

» u(p) is the chemical potential.
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2. Basics of the phase field theory

» In 1-dimension and with the previous double-well potential,
the phase field is given by:

X
X) = tanh : 8
() = tann () ®)
X
X = Z7 (9)
Cn = $, Cahn number. (10)

» The surface tension is then defined by

dy __2\/_k
L/ (—) ax = 3¢ (11)
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2. Basics of the phase field theory

» Outside the equilibrium, Cahn and Hilliard® proposed

Oy
— 12
f V-J, (12)
J=-MVyu, (13)
dw
— kV?p. 14
p(p) = do (14)

» Time behavior of the phase field due to the diffusion of the
chemical potential.

» Investigating spinodal decomposition.

°J. W. Cahn/J. E. Hilliard: Free Energy of a Nonuniform System. . @
Interfacial Free Energy, in: J. Chem. Phys. 28.2 (1958), pp=258-267.
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2. Basics of the phase field theory

Numerical simulation of a spinodal decomposition in 2D,
Cn=10"72,
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2. Basics of the phase field theory |
Fluid 2
Fluid1 08
Wall

Figure 7: Contact line between two fluids and a wall. The static
contact angle is 6.

Fiel= [ V() + 5IVelf | v+ [ ods. (19
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2. Basics of the phase field theory Il

» The minimization of F[p]’

v

u(p) = Z—gp — kVZp =0, ¥x € Q, (16)
dp  df

L(p) = a_i + —d:; — 0, on 99, (17)

-
fW(SO) = —0 C0OS (98%0(3 4 z )7 (18)
i Do  3(1—¢?)o

(1928-2016).

’J. W. Cahn: Critical point wetting, in: J. Chem. Phys. 66.8 (1977), @
pp. 366/7/-3672.
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2. Basics of the phase field theory

» Qutside the equilibrium, creation of force proportional to
V.
» Stokes equations:

V- -u=0, (20)
—VP+V - [2n(e)D(U)] + p(p)g + Ve =0,  (21)

» Cahn-Hilliard equation:

2 Ve U=V M) Va(e)) (22)
A

i) = Gz ol —1) = BV, (23)
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2. Basics of the phase field theory

}}}}}}}

» Under dimensionless form:

~VP +V - [2n(p)D(u)] + @p(sf))g

2v/2CaCn
Jp
ot

u(e) = p(p° — 1)

» Dimensionless numbers:

V.-u=0,(24)
nVe =0, (25)

1
+ V- -u= —Vz,u(gp) (26)
- Cn2 V20,(27)




3. Numerical results of two-phase flows
O 3.1 Droplet shrinkage

» Study this effect of Cahn number on droplet shrinkage for
fluids at rest.
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Figure 8: A static droplet in a liquid at rest.

IIIIIII

17/33



3. Numerical results of two-phase flows
O 3.1 Droplet shrinkage
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Figure 9: a/ap vs. t for three Cahn numbers. @
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3. Numerical results of two-phase flows
O 3.1 Droplet shrinkage

» Small value of Cahn number prevents the shrinkage.

» According to Yue et al.8, the critical radius below which the
shrinkage occurs is

fre = | — VCn, (34)

» r,=0.7 forCn =101,
» r,=06forCn=5-10"2,
» r, = 0.4 for Cn = 107 2.

8P. Yue/C. Zhou/J. J. Feng: Spontaneous shrinkage of drops and mass
conservation in phase-field simulations, in: J. Comput. Phys. 223.1 (2007),

pp. 1-9.
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3. Numerical results of two-phase flows
O 3.2 Capillary rising

0N, top

» The diameter of the tube is used as
o0 characteristic length.
» U chosen by balancing gravity ~ viscous
forces = U = pgD? /0.

Op (1 —¢?)V2cosbs Ou

u=20 =0, VX € 002 35
> on 2 Cn " on , VX € 9lp, (35)
~0.5 Op  Ou
9. bottom o-n=0, 5 = an 0, Vx € 9N, top, (36)
Fi 10 n (p+ 1 )n Op _ On 0, Vx € 0Qx, bottom. (37)
. fo g — = —= , .
\gure 1o P27 8n T on T N

Geometry of the
circular tube.

&
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3. Numerical results of two-phase flows

}}}}}}}

O 3.2 Capillary rising

» A numerical example has been done with:

fs = 80°, Bo=1, Cn= 1072, Pe = 10°.

» Initially, the heavy fluid (1) is below z = 0:

gOo(Z, f) = —tanh (

Z

V2 Cn

).

(39)
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3. Numerical results of two-phase flows
O 3.2 Capillary rising

Capillary rising of water in a tube with a static contact angle
equal to 47 /9.

&
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3. Numerical results of two-phase flows
O 3.2 Capillary rising

10°
107
— Num. res.
N - = Linear approx.
" Zmax =0.718

107 . . . .
10 10" 10° 102 107

Figure 11: Contact line position as a function of time for s = 80° and
Bo = 1. @
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3. Numerical results of two-phase flows
O 3.2 Capillary rising
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Figure 12: Geometry of the free surface, z vs. r, for 63 = 80° and

Bo = 1. @
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3. Numerical results of two-phase flows
O 3.2 Capillary rising
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Figure 13: z-axis velocity component v vs. r, over an horizontal line
localized right on the contact line.
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3. Numerical results of two-phase flows
O 3.2 Capillary rising
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X

Figure 14: v/ max(v) vs. x ~ v/Pe right on the contact line for t = 2.5
for Bo = 1 and Pe = 50, 102 and 10°.

» The diffusion layer of ;. ~ 1/+/Pe as shown in®.

9A. J. Briant/J. M. Yeomans: Lattice Boltzmann simulations of contact line
motion. |l. Binary fluids, in: Phys. Rev. E 69 (3 2004),7p. 031603.
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3. Numerical results of two-phase flows

O 3.3 Drop spreading on an horizontal wall

fluid 2, o = fHm

52 = (1= )VZeos0,/(2Cn),

ou

on

=0

Figure 15: Geometry of a spreading drop of fluid 1 in the initial

configuration.
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3. Numerical results of two-phase flows

O 3.3 Drop spreading on an horizontal wall

N
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Drop spreading of a drop on a wall with §s = 7/6, Cn = 1072
and Pe = 10°.
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3. Numerical results of two-phase flows

O 3.3 Drop spreading on an horizontal wall
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3. Numerical results of two-phase flows

O 3.3 Drop spreading on an horizontal wall
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Figure 17: Drop shape during the spreading at different times.
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3. Numerical results of two-phase flows

O 3.3 Drop spreading on an horizontal wall

» The theory of the dynamics of triple line has been
described by Cox°:

g(eda 7/7\) o 9(937 ﬁ) = —Ca”ln = (40)
in which the function g(6, 1) is given by
6
do
0.1) = [ o (41
g( 77) 0 f(Oéa 77)
with
(.7 2sina {ﬁz (a2 — sin? a) + 27 [04(7'(' — a) + sin? oz] + (7 — )2 — sin? a}
fla, 1) =

(42)

1°R. G. Cox: The dynamics of the spreading of liquids on a solid surface.
Part 1. Viscous flow, in: J. Fluid Mech. 168 (1986), pp-: 169+194.

INES

A(a? — sin® a) [r — a + sinacos o] + [(77 — a)2 —sin? oz} (a — sin o cos «) |

&

31/33



3. Numerical results of two-phase flows

O 3.3 Drop spreading on an horizontal wall
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Figure 18: The dynamic contact angle as a function of Ca™.
Comparison between the numerical result and the Cox’s theory with @
e=10"".
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4. Conclusion and perspectives

» Numerical solver to study two-phase flows using the phase
field theory'!:
» Wetting properties of wall easy to take into account.
» Dynamics and temporal behaviors well described:
» Capillary rising in a tube;
» Drop spreading on a solid substrate.
» The physics is mainly controlled by two numbers:
» Cn < 1072: Pe > 10%.

» Introduce a “real” thermodynamics.

» Applications:

» Phase separation of oxide glasses;
» Bubble nucleation in glass former liquids.

"E Pigeonneau/E. Hachem/P. Saramito: Discontinuous Galerkin finite
element method applied to the coupled Stokes/Cahn-Hilliard equations, in: @

Int. J. Num. Meth. Fluids under revision (2018), pp. 1—28.
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