

Introduction générale sur les phases amorphes : propriétés et aspects structuraux

NADIA PELLERIN

Opale: SiO₂-nH₂O

PARTIE 1

Applications et familles de verre

Procédés de synthèse

Propriétés

- Température de transition vitreuse Tg
- Viscosité
- Définition

Poutres en verre au *Centre de Recherches et de Restauration des musées de France* (Louvre - Paris) 11 poutres supportant chacune 14 tonnes

Fusion : 1300 – 1400°C Affinage : 1450 – 1550°C Braise : 1000 – 1200°C Float : 600°C, N₂+H₂, étain

Fusion

Les matières premières sont transformées en une masse liquide sans infondu

L'affinage

Homogénéisation par les courants de convection dans le verre et affinage par dégazage

Braise ou conditionnement thermique

abaissement à la température de travail pour accès aux *feeders*

BAIN D'ETAIN DU PROCEDE FLOAT

Épaisseur adaptable : 0,7 à 25 mm / top rollers

Source : Saint-Gob

Procédé Float: mis au point 1952, Sir Pilkington

Procédés SOL GEL et dérivés : basses températures

Procédé permettant la synthèse de verres, de céramiques et de composés hybrides organo - minérales à partir de **précurseurs en solution, à basse température.**

Aérogels de silice 5 fois plus isolant que l'air (thermique et électrique)!

Porosité > 90%

Procédés Sol-Gel : polymérisation minérale, voie métallo-organique - EXEMPLE

EXEMPLE DE LA SILICE Si $(OC_2H_5)_4$ ou <u>TEOS</u> *tétraéthylorthosilicate*

• Réaction d'hydrolyse

Élaboration de réseaux d'oxydes ou d'hydroxyde métallique à partir des précurseurs de type **alcoxydes métalliques** M(OR)_n avec **R = C_nH_{2n+1} groupe alkyle**

- Convertir la fonction M-OR en M-OH
- M(OR)_n : M le métal (Si, Ti, Zr, Al, Sn,...) et OR : groupement alcoxyde
- $M (OR)_n + H_2O = (OR)_{n-1} M (OH) + R OH$
- <u>Réaction de condensation</u>
 - Convertir la fonction hydroxyle en espèce M-O-M (réseau macromoléculaire)
 - Réactions mises en jeux : polycondensation

formation de ponts oxo (oxygène) par réaction d'oxalation avec élimination d'eau ou d'alcool

• $(OR)_{n-1} - M - (OH) + OH - M - (OR)_{n-1} \rightarrow (OR)_{n-1} - M - O - M - (OR)_{n-1} + H_2O$

Si, $\mathbf{O}: \mathbf{O}$, $\mathbf{O}: \mathbf{C}$ O: H

Condensation de 2 **silanols**: formation d'un **pont siloxane** (Si-O-Si) et libération d'une molécule d'eau Contrainte : haute pureté!

SiO₂: n = 1,45 GeO₂: n = 1,60

Dopant: Ge 1%mol. GeO₂ dans SiO₂ accroît l'indice optique de +0.00015

Cœur et gaine Indice optique^{cœur} > indice optique^{gaine}

réflexion totale

Fig. 7.39. Procédé de fabrication d'une préforme de fibre optique.

Préforme : objet court et large qu'on va étirer pour faire des fibres très longues d'environ 125 μm

Propriétés thermodynamiques : Tg

Courbe bleue : équilibre

V: volume n: indice optique H: enthalpie S: entropie Tm: melting temperature Tg: glass temperature

T < Tm: solide à l' équilibre

Etat cristallisé: ordonné

Etat **stable**

Tm: transition de phase du premier ordre

Courbe rose : hors équilibre

entre Tg et Tm : Liquide surfondu

T < Tg: solide hors équilibre

Tg: dépend de la cinétique de trempe.....

Intervalle de transition vitreuse

Etat vitreux: désordonné ou amorphe

État métastable

Tg: non strictement un point de transition thermodynamique. Pas de chaleur latente associée

Propriétés thermodynamiques : Tg

Figure 1. Modification des propriétés thermodynamiques au voisinage de la transition vitreuse.

DSC: Differential Scanning Calorimetry: flux de chaleur = f(T)

Excès de C_p dans le liquide surfondu (T > Tg) interprété comme un excès d'entropie configurationnelle (notion de désordre) Flux chaleur = C_p.V_{chauffe}

 $Cp = \triangle Q / \triangle T$

ATD: Analyse Thermique Différentielle $\Delta T = f(temps)$

Mesure de ΔT entre échantillon et témoin inerte

 Δc_p est faible pour les verres à liaisons directionnelles (fort caractère covalent) dit **liquides forts**.

 Δc_p est grand pour les liaisons peu directionnelles (ioniques, Van der Waals) dits **liquides fragiles**

 Plus ou moins fortes évolutions structurales entre le liquide et le verre

<u>Figure 5.</u> Variation des chaleurs spécifiques en fonction de la température réduite pour quelques systèmes vitrifiables.

Viscosité et mise en œuvre des verres

Variation de la viscosité η des verres en fonction de la température.

Viscosité (η): résistance à l'écoulement – inverse de la **fluidité Viscosité dynamique**: en **Pa.s** ou poise (CGS) avec **1 Pa.s** = **10 poise** <u>Viscosité à Tg</u>: 10¹³ poise = 10¹² Pa.s - convention

Solidification d'un verre par figeage progressif du liquide par augmentation de sa viscosité pendant que sa température s'abaisse.

Trempe du liquide:

Selon la composition de la fonte, des vitesses de trempe faibles ou très élevées sont nécessaires
Verres silicatés: trempe à l'air
Verre B₂O₃ : pas de contrainte de trempe Verres métalliques, Sb₂O₃ : ultra trempe!
➢ échantillons produits de faibles épaisseurs

Viscosité et mise en œuvre des verres

RESUME

La solidification d'un verre se fait donc par figeage progressif du liquide : augmentation de la **viscosité** et du **temps de relaxation moléculaire càd du temps de « mise en équilibre »** pendant que sa température s'abaisse d'où un <u>caractère relaxationel de la transition vitreuse.</u>

Thermodynamiquement, l'état vitreux est un état hors équilibre

► Excès d'enthalpie, d'entropie, de volume par rapport au cristal, qui se traduit par un désordre configurationnel.

 \Rightarrow T_g = f(vitesse de refroidissement q). Et Tg \downarrow si q \downarrow

 \Rightarrow La transition vitreuse n'est pas une transition de phase au sens strict de la thermodynamique

 $\eta(T) = G_{\infty}\tau_{\alpha}$

τ : temps de relaxation des fluctuations de densité
 G∞ : module élastique instantané

Condition de vitrification:

Viscosité du liquide suffisamment élevée (10⁴ à 10⁶ Pa.s) Vitesse de refroidissement suffisante (dépend de la nature et du volume de liquide) pour bloquer la nucléation-croissance

Paul. Claudel

« Une espèce d'eau solidifiée, tangible et intangible entre nos doigts, une contenance spirituelle »

1868 - 1955 1869: essai « l'œil écoute », la magie du verre

Jean Zarzycki*

«solide non cristallin présentant une transition vitreuse. L'état correspondant est l'état vitreux»

*Après 1940: Professeur à l'université de Montpellier

1954-1970: responsable du laboratoire de recherche fondamentale de St Gobain Recherche

Définition 'actuelle'

Tout solide qui possède une structure non cristalline et qui présente un phénomène de transition vitreuse lorsqu'il est chauffé jusqu'à l'état liquide [1].

[1] Y. Yue, "The iso-structural viscosity, configurational entropy and fragility of oxide liquids," *Journal of Non-Crystalline Solids,* vol. 355, pp. 737-744, 2009/05/01/ 2009

Amorphes et polymères

Polymères thermoplastiques:

Matériaux amorphes et infusibles Obtenus par condensation de monomères Toutes les liaisons sont de forte intensité

Matières thermodurcissables:

PE (-CH₂-)n PVC polychlorure de vinyle (-CH₃Cl-)n PS = $[-CH_2-CH(C_6H_5)]n$

Exemples:

Les pneus (caoutchouc +S)

Résines époxy (araldite..)

PARTIE 2

Structure – cas de la silice

Ordre à courte / moyenne et longue distance

Techniques d'analyse:

- Diffusion RX, neutrons
- Absorption EXAFS, XANES
- Spectroscopie RMN
- Spectroscopies vibrationnelles

Classification: Formateurs / modificateurs /intermédiaires

Modèle de Greaves

Les formes cristallines de la silice

Les formes cristallines de la silice appartiennent à la famille des **tectosilicates**:

Structures tridimensionnelles constituées de **tétraèdres (SiO₄)⁴⁻** liés par les sommets, sauf la **stishovite**.

Si: coordinence 4
O: coordinence 2
Liaisons Si-O covalentes
➢ Encore vrai pour la silice vitreuse

Les formes cristallines de la silice

Cristobalite: -

Haute T, β : cubique (Z = 8) Basse T, α : quadratique (Z = 4)

Coésite: chaines d'anneaux de 4 tétraèdres ↓

Stishovite: structure rutile: Silicium en **coordinence 6 :** structure bcq plus **compacte** que les autres polymorphes de la silice!

an

21

Classification des roches volcaniques suivant leur teneur en silice

Roches **acides**: plus de 63 % de teneur SiO₂ \ge 63% Roches **basiques** : teneur SiO₂ \le 52 %

Structure de la silice vitreuse

Le verre de silice est caractérisé par une distribution des angles et, dans une moindre mesure des longueurs de liaison L'angle Si-O-Si (inter-tétraèdres) : 120 à 180°, max de probabilité à 144°

> Silice vitreuse $R_{(Si-O)} = 1,62 \text{ Å},$ R₍₀₋₀₎ = 2,65 Å α = O-Si-O \approx 109,5° θ = Si-O-Si \approx 144°

Schéma d'un réseau cristallin et vitreux de silice à 2 dimensions : modèle de ZACHARIASEN-WARREN: Continuous Random Network : réseau aléatoire continu

🔵 Si

1.23. Distribution de la valeur de l'angle des liaisons Si-O-Si dans la silice vitreuse. Ionnée est rapportée à la probabilité que l'angle soit 144°. D'après [33].

 \cap

Structure de la silice vitreuse

Un ordre à courte distance, à l'échelle des distances interatomiques (< 3 Å)

Graphéne: cristal de graphite bidimensionnel

a et b: modèle de Zachariasen de la silice cristalline et amorphe à 2 D

c et d: ADF-STEM (Annular Dark Field – Scanning TEM): film de silice sur support graphéne (P. Y. Huang, Nano Letters, 2012, 12, 1081-1086)

Soit ρ_0 la densité moyenne d'atomes

► Nombre total d'atomes divisé par le volume total

Soit $\rho(\mathbf{r})$ la densité de paires

Nombre moyen d'atomes par unité de volume, situés à la distance r d'un atome de référence A

Soit $dN = \rho(r).4 \pi r^2 dr$ $dS = r^2 \sin\theta d\theta d\phi$ dN: Nombre d'atomes dont la distance à A est comprise entre r et r+drEn intégrant de r1 à r2: coordinence de A

On appelle Fonction de Distribution de Paires (PDF):

 $g(r) = \rho(r) / \rho_0$ probabilité de présence d'une paire d'atomes M₁M₂ distants de r

On appelle Fonction de Distribution Radiale: FDR = $\rho(\mathbf{r}).4 \pi r^2$ Et fonction de corrélation T(r) T(r) = $\rho(\mathbf{r}).4 \pi r$ utilisée en pratique car c'est la TF du signal expérimental I(Q)

I(Q): intensité diffusée Q: norme du vecteur diffusion Q= $4\pi \sin\theta/\lambda$

а

HC

Fonction ρ (**r**): **a- dans un cristal 1: P, 2: F, 3: I, 4: HC à 0 K b-** cristal à T \neq 0 C- structure désordonnée

Source: J. Zarzycki, « les verres et l'état vitreux »

STRUCTURES DESORDONNEES : TECHNIQUES DE DIFFUSION (RX, neutrons)

Fig. 1.22. Fonction de corrélation pour la silice vitreuse ; d'après [30].

SRO: Short Range Order MRO: Medium Range Order LRO: Long Range Order

G(r) fonction de densité de paires

Statistique de taille des anneaux (en nombre de tétraédres)

- Spectres XANES de types de silice possédant différents degrés de cristallinité et différents environnements des atomes de silicium – étude au seuil K du Si
- ★ XANES sensible à l'ordre à moyenne et longue distance X-ray Absorption Near Edge Structure

Pic C (raie blanche) : transition 1s vers 3p ou 3s du Si

Pics C, F et G: témoignent du **Si en coordinence 4** (quartz, cristobalite) ≠ stishovite

'a-SiO₂' - Silice amorphe: pics C et G Perte de l'ordre à moyenne distance

Par modélisation on montre que D, E et F n'apparaissent qu'à partir de clusters organisés > 7 Å

Spectroscopie d'Absorption des RX: étude de l'ordre à moyenne et courte distance

2 parties: XANES (seuil d'absorption) et EXAFS (structure fine)

<u>Seuil d'Absorption</u>: transition électronique (cœur vers le niveau fondamental) correspondant à l'éjection d'un **photoélectron** dont l'énergie dépend de l'état électronique initial de l'élément

XANES: X-ray Absorption Near Edge Structure

Excitation électronique selon d'autres processus que l'effet photoélectrique.

* Etude de l'ordre à moyenne distance

Partie **EXAFS**: Extended X-ray Absorption Fine Structure

Variation du coefficient d'absorption avec l'environnement local (valence, coordinence, distances, types de liaison) due aux effets d'interférences (onde émise et onde rétrodiffusion du photoélectron par les atomes voisins) avant la fin du stade d'excitation de l'atome. Les oscillations de Kröning (ou structure fine) sont dues à ce phénomène

STRUCTURES DESORDONNEES : TECHNIQUE XANES et RMN, application à l'étude d'un silex

silex

 Spectre XANES du silex très proche de celui du quartz
 Faible intensité des signaux D et F pour le silex

Conclusion:
 Le silex est cristallin mais
 désordre à moyenne distance

RMN ²⁹Si: application à l'étude des silices cristallines et amorphes

STRUCTURES DESORDONNEES : TECHNIQUE RMN ²⁹Si, application à l'étude d'un silex

Raie Q⁴: 1.5 ppm de largeur à mihauteur

 Signal à -110 ppm témoigne des environnements tétraédriques. La largeur de la raie Q⁴ : désordre des environnements (distribution des valeurs d'angles Si-O-Si, distances...)

 Q³ et Q² sont attribués ici aux espèces hydratées Si-OH (silanos) qui vont introduire une dépolymérisation du réseau

Figure 20: Spectre de RMN ²⁹Si MAS du silex

Dans un verre NdB₃O₆

Distances B - O: 1,9 Å Nd – O: 2,48 Å Nd – B : 3,36 Å Thèse H. TREGOUET (2016) UPMC

EXAFS au seuil L3 du néodyme

Extended X-ray Absorption Fine Structure

L'ordre spatial est étudié à 3 ordres de grandeur:

 De 1,5 à 2,9 Å: 'courte distance' au sein du tétraèdre, 1^{ère} sphère de coordinence

 De 2,9 à 5,5 Å:' moyenne distance' échelle de la connexion intertétraèdres

 Longue distance: topologie du réseau, exploration des nanodomaines?

STRUCTURES DESORDONNEES : TECHNIQUE RMN ²⁹Si, application à l'étude d'un silex

Réseau = atomes F (semi - métal) + Oxyg	Formateurs:			
F: atomes FORMATEURS	•Si \rightarrow (SiO ₄) ⁴⁻ •Ge \rightarrow (GeO ₄) ⁴⁻			
Possibilité de réaliser un verre F _n F' _m O _p	$\bullet P \rightarrow (PO_4)^{3-1}$			
		•B \rightarrow (BO ₃) ³⁻		
Unités structurales: FO _n		•As \rightarrow (AsO ₃) ³⁻ •Sb \rightarrow (SbO ₂) ³⁻		
tétraèdre, triangle, octaèdre,				
Interstices : cations M ⁿ⁺ et des oxygè pontants NBO	-			
M: atomes MODIFICATEURS				
Modificateurs:	Intermédiaire	s:		
ions: alcalins, alcalino - terreux, métaux de transition, terres-rares	Al, Pb, Zn, Cd, Ti, Fe, Ni, Be, Mg, Y.			

"Règles de Zachariasen" (1932)

- 1- Petit nombre d'oxygènes autour de **F**: 3 ou 4 (F de petite taille)
- 2- Chaque **O** ne peut être lié à plus de 2 atomes **F**
- 3- Unités structurales associées par les sommets (jamais de partage d'arêtes ou de faces)

4- Au moins 3 sommets de chaque unité structurale mis en commun, pour assurer un réseau 3 D

Règles rigoureusement applicables uniquement aux verres d'oxydes simples:

SiO₂, GeO₂, B₂O₃, P₂O₅, As₂O₃, Sb₂O₅

CLASSIFICATION DES CATIONS : Formateurs/modificateurs

Q⁴ ~ -110 ppm > Dépolymérisation du réseau silicaté par Q³ ~ -95 ppm l'introduction de modificateurs de réseau 0 Si BО O 1s, 25% Na2O b O 1s, 33% Na₂O O 1s, Vit, Silica a_ BO Peak Peak BO = 100% BO = 63.4% BO = 73.7% B.E. = 533.18 eV NBO = 26.3% NBO = 36.6% FWHM = 1,25 eV NBO+MBO Intensity (cps) Intensity (cps) (cos Reak Na+ sitv 1.0 Inten Si 0.9 Si Na KLL Na+ Auger Peak calc O 0.8 532 532 528 540 536 528 540 536 532 528 540 536 Binding Energy (eV) Binding Energy (eV) Binding Energy (eV) sale NBC MPS mouth d 40% Na₂O Glass 50% Na₂O Glass С NMR result Stebbins, 1987 2000 8000 XPS results This study Arb. Units 1000 Arb. Units 0007 NMR results This study 0.2 Q⁴ FWHM = 11.8 ppm NMR results onstraine Maekawa et al., 1991 K = 14.00.1 = 00 calc BO 0.0 0.0 -100 -120 -100 -60 -80 -40 -60 -80 -120 ppm ppm 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 X Na₂O

H.W.Nesbitt, G.M.Bancroft, et al, JNCS 357 (2011)

H. Eckert. Structural characterization of noncrystalline solids and glasses using solid state NMR.

Progress in NMR Spectroscopy, 24 :129–293, 1992.

CLASSIFICATION DES CATIONS : intermédiaires/modificateurs

La structure du verre est construite selon un réseau aléatoire continu à base de tétraèdres ou de triangles, et de variations des angles entre polyèdres et des angles diédraux (rotation entre polyèdres) Schéma structural d'un verre dans lequel un ion intermédiaire Al³⁺ est en position de formateur de réseau en raison de la présence d'un ion alcalin M⁺

►Le modificateur de réseau n'implique pas la dépolymérisation ! Représentation d'un verre SiO₂ dépolymérisé par ajout de Na₂O selon le **modèle du réseau aléatoire continu de Zachariasen - Warren**: la distribution des cations modificateurs est <u>supposée</u> homogène

Réseau de silicate

Dans la classe **des modificateurs**, les rayons ioniques sont plus importants, ce qui donne lieu à des polyèdres de coordinence supérieure (octaèdre, cube...). Les oxydes associés **MO** ou M_2O ne peuvent pas vitrifier seuls. L'insertion des modificateurs créent des **oxygènes non pontants** (Non Bridging Oxygen) en rompant les liaisons inter-tétraédres.

Conséquences: baisse de la viscosité, baisse de la T_{fusion}, baisse des performances physico-chimiques

	triangle	tétraèdre	octaèdre	cube
coordinence	3	4	6	8
R _{cation} Min Max	0.21 0.315	0.315 0.58	0.58 1.03	1.03 1.93
Rayons des cations (Å)	B³⁺ 0.25	P ⁵⁺ 0.31 Si ⁴⁺ 0.40 Be ²⁺ 0.41 As ⁵⁺ 047 V ⁵⁺ 0.49 Al ³⁺ 0.53 Ge ⁴⁺ 0.53	P^{3+} 0.58 As^{3+} 0.72 Sb^{5+} 0.74 Ti^{4+} 0.74 Nb^{5+} 0.78 V^{3+} 0.78 Mg^{2+} 0.86 Zr^{4+} 0.88 Li^+ 0.90 Sb^{3+} 0.90	Cd^{2+} 1.03 Ca^{2+} 1.14 Na^+ 1.16 Sr^{2+} 1.32 Pb^{2+} 1.33 Ba^{2+} 1.49 K^+ 1.52 Rb^+ 1.66 Cs^+ 1.81

Formateurs Modificateurs

Intermédiaires

- Zr⁴⁺, Be²⁺: formateurs chez les fluorures, intermédiaires chez les oxydes
 - Les gros intermédiaires des oxydes peuvent être formateurs des **chalcogénures** (Ge⁴⁺, As³⁺, Sb³⁺)

CLASSIFICATION DES CATIONS : intermédiaires/modificateurs

Dépolymérisation du réseau silicaté :

 $SiO_2 - M_2O$ et $SiO_2 - MO$

 $2 Q^{n} \stackrel{k_{n}}{\leftrightarrow} Q^{n-1} + Q^{n+1} (n=1,2,3)$ avec k_n= ([Qⁿ⁻¹][Qⁿ⁺¹])/ ([Qⁿ])²

Déplacement de l'équilibre vers la droite avec l'augmentation de la **force de champ** du cation modificateur (Z/a²)

¹⁷O NMR - Aluminoborosilicates K: potassium, C: calcium *J.F. Stebbins, Chemical Geology (2012)*

Fig. 1.27. Spectres 01s de verres de silice et de silicates de sodium ; 1 - silice vitreuse ; 2 - 9 % de Na₂O en masse ; 3 - 20 % de Na₂O en masse ; 4 - 30 % de Na₂O en masse ; 5 - 40 % de Na₂O en masse. D'après [43].

R. Bruckner, H.U. Chun, Glastech Ber. (1978)

Spectre ESCA: *Spectroscopie de Photoélectron pour l'Analyse Chimique* (**ou XPS**: *X-ray Photoelectron Spectroscopy*)

Permet de différencier les oxygènes BO et NBO $E_c = hv - E_l - W_s$ E_l : énergie de liaison E_l dépend de l'environnement chimique (déplacement chimique) W_s : travail de sortie

Cation	rayon ionique r (Å)	Coordinence (CN)	Force de champ F (Å ⁻²)
K^{+}	1,51	8	0,13
Na⁺	1,00	5	0,19
Ca ²⁺	1,12	8	0,33
Mg ²⁺	0,72	6	0,45
La ³⁺	1,16	8	0,47
Nd ³⁺	1,11	8	0,49

Tableau 39. Forces de champ $F(en \AA^{-2})$ de quelques cations alcalins (K^+, Na^+) , alcalinoterreux (Ca^{2+}, Mg^{2+}) , et terres rares (La^{3+}, Nd^{3+}) , selon les valeurs de rayons ioniques déterminées par Dietzel [9].

A. Dietzel, Z. Electrochem., 58 (1942)

CLASSIFICATION DES CATIONS : modificateurs, propriétés de viscosités

Fig. 1.12. Influence sur la viscosité, à diverses températures, de l'introduction dans la silice d'oxydes alcalins ; d'après [21].

L'abaissement de viscosité est moins important avec le calcium, qu'avec l'introduction d'alcalins:

- -« pseudo-pont »
- L'effet du Ca sur le liquidus est moindre que celui des alcalins (diagrammes de phase)
 H. Scholze, Glass Springer Berlin (1977)

Diagramme de phase du système $SiO_2 - Na_2O$

Diagramme de phase du système SiO₂ - CaO

CLASSIFICATION DES CATIONS : intermédiaires, propriétés de viscosités

CLASSIFICATION DES CATIONS : modèles

Zachariasen, W.H., The atomic arrangement in glass. J. Am. Chem. Soc., 54 (1932) 3841

Modèle de Greaves: réseau aléatoire continu modifié (1985) MRN « Modified Random Network »

G.N. Greaves, JNCS 71 (1985)

Fig. 1.24. Modèle de « réseau aléatoire modifié » pour un verre de silicate. Les zones grisées sont formées de tétraèdres SiO₄. Les cations modificateurs établissent la jonction entre ces domaines. D'après [38].

> Favorise la diffusion et la corrosion du verre

modèle du **réseau aléatoire continu** de Zachariasen - Warren

Modèle remis en question par les mesures de conductivité, de corrosion, de dynamique moléculaire, diffusion RX et neutrons, EXAFS.... *Chemins ou canaux de percolation*

Micro-ségrégation des cations

modificateurs formant des

canaux : juxtaposition de

zones polymérisées et

dépolymérisées

PARTIE 3

Verres au bore

B₂O₃, B₂O₃ - M₂O, B₂O₃ - SiO₂-M₂O

Verres aluminosilicatés, aluminoborosilicatés

Surface des verres, espèces hydratées

Boro-alumino silicate peralumineux

 $Rp=[Na_2O]+[CaO]/([Na_2O]+[CaO]+[Al_2O_3]$

Source: thèse Estelle Gasnier, Université d'Orléans 2014

FAMILLE DES VERRES AU BORE : B_2O_3 et $B_2O_3 - M_2O_3$

Acide borique: formateur de réseau

Verre B_2O_3 : triangle BO_3^{3-} reliés par les sommets organisés en **anneaux boroxols** $[B_3O_{9/2}]^{3-}$ pour 60 à 80 % des atomes de bore

Spectre Raman de B₂O₃
 ➤ Bande à 808 cm⁻¹ relative à l'élongation symétrique des anneaux boroxols

<u>Réseau B₂O₃</u>: Quasi bidimensionnel

Source: J. Zarzycki, « les verres et l'état vitreux »

non-ring boron

) oxygen

Unités boratées dans le réseau $B_2O_3 - M_2O$ et évolution de leur concentration en fonction de la teneur en alcalins [56, 60]

Modèle de Krogh-Moe

L'insertion de M₂O ou MO transforme les unités boroxols tout d'abord en unités **tétraborate** puis **diborate**, sans dépolymérisation du réseau:

Compétition entre l'augmentation de N₄ (jusqu'à 40% M2O) et apparition de NBO (débute vers 25%mol.)

 N₄: teneur en unités tétraédriques.
 (BO₄)⁻ compensés par un modificateur de réseau A 25%mol. M₂O: apparition de NBO sur les unités B^[3] 1NBO par B^[3] : métaborate 2 NBO par B^[3] : pyroborate 3 NBO par B^[3] : orthoborate

J.Krogh-Moe, J.Non-Cryst.Solids, 1 (1969) 269 W.L.Konijnendijk, Philips Res.Rep.Suppl. 1 (1975) 243

FAMILLE DES VERRES B₂O₃- M₂O

Fig. 1.25. Variation de la fraction N₄ d'atomes de bore tétracoordonnés dans un verre de borate alcalin en fonction de la teneur x en oxyde alcalin ; d'après [27].

- Du coefficient de dilatation thermique
- De la viscosité

X

'L'anomalie du bore'

- \blacktriangleright Influence de M₂O sur la viscosité
- ► Influence de la nature de l'alcalin
- ► Influence de T: réduction de N₄

Fig. 1.19. Influence de la composition sur les viscosités des borates alcalins à différente températures ; d'après [28]

W.J Dell, P.J Bray, S.Z Xiao, J.Non-Cryst.Solids, 58 (1983)

B.C Bunker, D.R Tallant, R.J Kirkpatrick, G.L Turner, *Phys.Chem.Glasses*, **31** (1990)

Modèle de Bray - - - -

Mesures — $R = [Na_2O]/[B_2O_3]$ et $K = [SiO_2]/[B_2O_3]$

 $R = [Na_2O]/[B_2O_3]$ et $K = [SiO_2]/[B_2O_3]$

Modèle de Bray

K ≤ 8						
(b) •		R < 0.5Reedmerge au profit dR = 0.5		rgnerite et danburite, des bore non ring N4 = N3		Réseau boroalcalin dilué dans de la silice pure
						Réseau boroalcalin majoritairement constitué de diborates
<u></u> 0	0.5 < R <0.5+K/16		5+K/16	N4 7		Destruction progressive des diborates et
			Déj	à des NBO		insertion des bores dans le réseau silicaté : groupes reedmergnerites [BSi ₄ O ₁₀] ⁻
(c) <u>o-si-o</u>		0.5+K/16		N4 max atteint		Verre entièrement constitué de groupes reedmergnerites et danburites
		0.5+K/16 < R <0.5+K/4		N4 constant		Les alcalins en excès créent des NBO sur les groupes SiO ₄
i B:unité reedmergnerite C: unité danburite		0.5+K/4 < R	Х <2+К	N4≌		Destruction des unités Reedmergnerites: Création de Q ² et d'unités pyroborates, destruction des unités danburites: création de pyroborates

SYSTEMES ALUMINO-SILICATES

L'aluminium **Al**^[4] **est fortement substitué au silicium** dans les systèmes alumino silicatés et boro-alumino-silicatés.

Le taux de **Al hautement coordonné** devient généralement prédominant qd le rapport modificateur sur aluminium devient inférieur à 1. De plus il augmente avec la force de champ du cation modificateur (Ca, Mg, par rapport à Na)

Thèse Julien Hiet, Orléans (2009)

Domaines de déplacements chimique pour les Qⁿ(mAl):

M.M.E. Lippmaa, A. Samoson, M. Tarmak, G. Engelhardt, Investigation of the structure of zeolites by solid state high resolution 29Si NMR spectroscopy, J. Am. Chem. Soc. 103 (1981) 4992–4996.

SYSTEMES ALUMINO-SILICATES

 \checkmark Variation de C_Q(AlO₄) avec la nature du cation compensateur de charge

Systèmes alumino silicatés ou boratés

Fig. 5. Experimental ¹⁷O isotropic projection (solid line) collected at 14.1 T and fitting results (dashed line: sum; dotted lines: components) for a typical sample, NAB-40-20-40. Fit parameters are given in Table 3

B ⁴	B ³ (ONBO)	B ³ (1NBO)	Al ⁴	Al ⁵	Al ⁶
9,7	31,9	25	31,9	1,4	0

Quantification (en %) des espèces à partir du calcul du spectre L.S. Du, J.F. Stebbins, SSNMR 27 (2005) 37-49

Règle de Loewenstein: évitement maximal des liaison ^[4]M-O-^[4]M où M = B, Al

- Encombrement stérique
- Répulsion électronique des charges négatives portées par AlO₄⁻ et BO₄⁻

Règle de « *maximal evoidance* »: assez bien vérifiée mais l'espèce

De façon générales: L'espèce ^[3]B-O-^[4]Al est TRES favorable!!

 $B^{[4]}$ -O-Al^[4] plus favorable que Al^[4]-O-Al^[4] et $B^{[4]}$ -O-B^[4]

Exemple de système aluminosilicate Système $SiO_2 - Al_2O_3 - La_2O_3$

Tg ~ 900°C (↗ avec le taux de TR) Dureté élevée (~8 Gpa) Très bon comportement en durabilité chimique Domaine homogène centré sur 60 SiO₂-20 Al₂O₃-20 RE₂O₃ (mol.%)

Ternary system SiO2-Al2O3-La2O3

Aspects structuraux

- Liaisons AI-O-AI d'après expériences de corrélation 2Q–1Q ²⁷AI NMR + simulation MD (A. Jaworski et al, Phys. Chem. Chem. Phys. 14 (2012) 15866–15878)
- Rôle majeur de l'aluminium dans la contribution à l'homogénéité chimique du verre / séparation de phase si taux insuffisant : large distribution d'env.
 Al4, Al5, Al6, distribution des NBO sur le réseau Si-Al, espèces Qⁿ(mAl), Qⁿ

J. Hiet et al, Phys. Chem. Chem. Phys. 11 (2009) 6935–6940 M. Deschamps et al, Phys. Chem. Chem. Phys., 10 (2008)

ECOLE THÉMATIQUE DU CNRS 'VERRES ET DIFFUSION' 03-08 OCTOBRE 2021, FRÉJUS

X homogeneous

[11] A. Makishima (1982)

• separeted X[22] S. Iftekhar (2010)

SYSTEMES BORO-ALUMINO-SILICATES

Limite d'incorporation de Nd₂O₃ en fonction de Rp= $[Na_2O]+[CaO]/([Na_2O]+[CaO]+[Al_2O_3]^{[1]})$ Verre de base $60SiO_2-15B_2O_3-5Al_2O_3-20Na_2O - T_{elaboration}=1450^{\circ}C$

par rapport à l'aluminium

Connaissances de la structure du réseau^{[1],[2],[3]}

- ✓ Présence d'AlO₄ uniquement $AIO_4 \rightarrow$ formateur de réseau
- ✓ Présence de BO₃ et BO₄
- TR³⁺ → modificateur de réseau \checkmark

Thèse E. Gasnier 2014

SYSTEMES BORO-ALUMINO-SILICATES

AlO₄ 27Al

40

¹¹B

 \cap

60

(ppm)

 BO_3

U 1

 AIO_5

20

 BO_4

0

-10

VERRES DE PHOSPHATES

Tétraédres (PO₄)³⁻ Q⁰, Q¹, Q², Q³ Faible mixité des réseaux Si et P Zones P de forte dépolymérisation

B.O. Mysen, G.D. Cody, Geochim Cosmochim Acta, 65 (2001)

Spectres RMN ³¹P d'un alumino-phospho-silicate avec une variation du taux de Al₂O₃ d'après Cody *et al.*

50

 Q^0

³¹P

NA8P2

NA6P2

NA5P2

NA4P2

NA3P2

NA2P2

NA0P2

100

600

500

400

300

200

100

intensity, %

Q³

-100

-50

0

chemical shift, ppm

SURFACE DU VERRE

Am. Chem. Soc., Vol. 110, No. 7, 1988

E. de La Rochefoucauld. Des caractéristiques de surface à l'assemblage par adhérence moléculaire d'une vitrocéramique : le Zerodur®. PhD thesis, Université de Versailles Saint-Quentin-en-Yvelines, 2009.

C.E. Bronnimann, R.C. Zeigler, Proton NMR study of dehydration of the silica gel surface. *Journal of the American Chemical Society*, 110 :2023–2026, 1988

Modélisation de la surface de la silice Passage d'une surface hydrophile à hydrophobe par élimination des molécules d'eau

MERCI DE VOTRE ATTENTION