Introduction to the structure and the structural role of elements in glasses

Laurent Cormier - Daniel R. Neuville

IMPMC, CNRS Sorbonne University Laurent.cormier@sorbonne-university.fr Géomatériaux, CNRS – IPGP Université de Paris neuville@ipgp.fr

ICG Spring School 2024

Structure and glass forming ability (GFA)

In principle almost any substance can be made into a glass by cooling it from the liquid state **if cooled sufficiently fast** to prevent crystallization.

Glass structure corresponds to the disordered structure of the supercooled liquid at the glass transition temperature

Understanding the structure enables the design of new materials with **tailored properties**, optimizing their **glass-forming ability** for diverse applications

No theories able to predict which materials are able to form a glass, and under what conditions

What is the region of glass formation ?

Glass forming region

Neuville et al., Chem. Geol. 229 (2006) 173

Cormier et al., J. Non-Cryst. Solids 555 (2021) 120609

Al₂O₃

CAs Al2O3

Glass forming region

Determination of glass forming region after extensive studies in compositions

Glass forming region

In a phase diagram, glasses are favored near eutectics because these freezing depressions bring the liquid to higher viscosities at lower temperatures

Correlation between critical cooling rate and viscosity along the liquidus branche

Critical cooling rates for glass formation in sodium and potassium silicates. Data from Fang et al. (1983) for a crystal fraction of less than 10^{-6} . The arrows indicate the position of the deepest eutectics of the binary systems shown in Fig. 5.

Richet et al., Chem. Geol. 225 (2006) 388

The combined effects of composition and temperature on viscosity along liquidus branches in alkali silicate systems. (a) Viscosity of sodium silicate melts at 1200 °C (Bockris et al., 1955; Leko et al., 1977). (b) Viscosity of alkali silicate melts along the liquidus branches of Fig. 5. Data from Poole (1948) and Bockris et al. (1955). The arrows indicate the positions of the deepest eutectics of the binary systems.

Structural approach to glass formation

Several models encompass most of the relevant aspects which are known to lead to glass formation:

- Based on coordination number
- Goldschmidt's radius ratio
- Zachariasen's random network theory
- Based on bond type
- Smekal's mixed bonding rule
- Stanworth's electronegativity rule
- Based on bond strength
- Sun's single bond strength criterion
- Based on field strength
- Dietzel's field strength
- Based on Mott's rule
- Phillips

 $\Rightarrow Laurent Cormier$ <u>USTV School - Cargese - 2017</u>

By extending Goldschmidt's original consideration of glass formation to radius and charge of the constituent atoms / ions, Dietzel classified elements according to their field strength, F_s

This considers the forces (attraction / repulsion) between cations and anions in the glass

 $F_{s} = Z_{C} / (r_{c} + r_{a})^{2}$

r = ionic radius of the cation (c)
or anion (a)

 $F_s = Z_C / a^2$

 Z_{C} = valence of the cation a is the distance between cation and oxygen

Dietzel, Glastechn. Ber. 22, (1948) 41

 $F_s = Z_C / a^2$

 Z_{C} = valence of the cation a is the distance between cation and oxygen

Classify	Z_c/a^2		
Former	> 1.3		
Intermediate	0.4 < F.S. < 1.3		
Modifier	< 0.4		

High field strength (for C it is 2.4) => covalent bonds, difficulty to form a glass

Intermediate field strength (1-2) => mixed bonds, can form glasses

Low field strength => ionic bonds, do not form glasses

classification of ions as network-formers, network-modifiers, or intermediates correlates well with Dietzel's field strength values

Element	Valence Z	Ionic radius	Coordination number	IonicFielddistancestrength Z/a^2		Function in glass structure	
K	1	0.133	8	0.277	0.13	Network-modifiers $Z/a^2 \approx 0.1-0.4$	
Na	1	0.098	6	0.230	0.19		
Li	1	0.078	6	0.210	0.23		
Ba	2	0.143	8	0.286	0.24		
Pb	2	0.132	8	0.274	0.27		
Sr	2	0.127	8	0.269	0.28		
Ca	2	0.106	8	0.248	0.33		
Mn	2	0.091	6	0.223	0.40		
Fe	2	0.083	6	0.215	0.43		
Mn	2	0.083	4	0.203	0.49		
Mg	2	0.078	6	0.210	0.45	Intermediates $Z/a^2 \approx 0.5-1.0$	
			4	0.196	0.53		
Zr	4	0.087	8	0.228	0.77		
Be	2	0.034	4	0.153	0.86		
Fe	3	0.067	6	0.199	0.76		
			4	0.188	0.85		
Al	3	0.057	6	0.189	0.84		
			4	0.177	0.96		
Ti	4	0.064	6	0.196	1.04		
В	3	0.020	4	0.150	1.34	Network-formers $Z/a^2 \approx 1.3-2.0$	
Ge	4	0.044	4	0.166	1.45		
Si	4	0.039	4	0.160	1.57		
Р	5	0.034	4	0.155	2.1		
В	3	0.020	3		1.63		

Classification of cations according to Dietzel's field strength (W. Vogel, Glass Chemistry, Springer-Verlag, 1992).

Structural role

Cations in the glass were categorized according to their role in the glass network

Network former

- Can form a glass network alone
- Strong directional bonding
- Example: Si⁴⁺, B³⁺, P⁵⁺, Ge⁴⁺, As³⁺, Be²⁺, with CN of 3 or 4

Network modifier

- Break the linkages between network formers
- More ionic bonding
- Example: Na⁺, K⁺, Ca²⁺, Ba²⁺, with CN ≥ 6

Intermediates (conditional network former)

- May reinforce (CN = 4) or further loosen the network further (CN 6 to 8)
- Can substitute to a network former but cannot form a glass per se
- Example: Al₂O₃, TiO₂, Ga₂O₃, As₂O₃, Sb₂O₃, Bi₂O₃, TeO₂, V₂O₅, MoO₃, WO₃

Mixing two network forming elements

SiO₂, B_2O_3 , and P_2O_5 the best glass-formers (Zachariasen–Warren conditions for glass formation also met for any of their combinations)

But

 $SiO_2-B_2O_3$ melts solidify as glasses at any proportion (with some region of immiscibility)

 $SiO_2 - P_2O_5$ and $B_2O_3 - P_2O_5$ melts solidify to crystalline solids for most proportions, or upon rapid quenching, form phase-separated glasses

differences in field strength $\Delta F_s =>$ crystalline solidification of the B₂O₃-P₂O₅ and SiO₂-P₂O₅ systems

Differences in field strength ΔF of cations in binary glasses for the main glass-formers SiO₂, B₂O₃, and P₂O₅ (W. Vogel, Glass Chemistry, Springer-Verlag, 1992).

Oxide glass system	Differences in field strength	Solidification behavior of the melt		
Si-B	0.06	Glass formation		
B-P	0.47	Precipitation of crystalline: BPO ₄		
P–Si	0.53	Precipitation of crystalline: $SiO_2 - P_2O_5$ and $3SiO_2 - P_2O_5$		

Vogel "Glass chemistry" (1994)

Dietzeld and field strength criteria Mixing two network forming elements

 $SiO_2 - B_2O_3$

Si⁴⁺ (in SiO₄) $F_s = 1.57$ B³⁺ (in B₂O₃) $F_s = 1.63$

Small difference in field strength : tendency for the division of the O²⁻ ions between the two competing cations

Topper J.Non-Cryst. Solids X 17 (2023) 100161

Differences in field strength ΔF of cations in binary glasses for the main glass-formers SiO₂, B₂O₃, and P₂O₅ (W. Vogel, Glass Chemistry, Springer-Verlag, 1992).

Oxide glass system	Differences in field strength	Solidification behavior of the melt		
Si–B B–P	0.06 0.47	Glass formation Precipitation of crystalline: BPO ₄		
P-51	0.53	Precipitation of crystalline: $SiO_2 - P_2O_5$ and $3SiO_2 - P_2O_5$		

Vogel "Glass chemistry" (1994)

 $SiO_2 - P_2O_5$ Si^{4+} (in SiO_4) $F_s = 1.57$ P^{5+} (in PO_4) $F_s = 2.1$

P higher field strength => favor the formation of PO₄ tetrahedra Si cannot compete with P to maintain SiO₄ tetrahedra => SiO₆ octahedra

P often promote phase separation due to its high field strength

Differences in field strength ΔF of cations in binary glasses for the main glass-formers SiO₂, B₂O₃, and P₂O₅ (W. Vogel, Glass Chemistry, Springer-Verlag, 1992).

Oxide glass system	Differences in field strength	Solidification behavior of the melt		
Si-B	0.06	Glass formation		
B-P	0.47	Precipitation of crystalline: BPO ₄		
P–Si	0.53	Precipitation of crystalline: $SiO_2 - P_2O_5$ and $3SiO_2 - P_2O_5$		

Different structural ranges

Short range structure (<3 Å):

coordination, bond lengths, bonding angles

– linkages homo (-Se - Se- , -C - C-, -As - As) vs. heteropolar (Si - O, B - O, Ge - S)

Medium range structure (3-15 Å):

- angles between structural units
- connectivity between structural units(corner, edge-sharing...)
- dimensionnality, rings
- heterogeneities

Long range structure, almost absent (no periodicity!) : - phase separation

Structural model

A good structural model should

- explain structure-properties relationships
- describe atomic arrangements at short and medium range
- have general concepts applicable to a large number of systems

Zachariasen's rules for glass formation

1. Each oxygen atom is linked (bonded) to no more than two glass-forming cations (e.g. Si⁴⁺);

2. Oxygen coordination number (CN) around glassforming cation is small: 3 or 4;

3. Cation polyhedra share corners, not edges or faces;

4. The polyhedral structural units form a **3-D continuous random network** in which every polyhedron shares at least 3 corners with its neighbors.

Network former: Si, Ge, P, B, ...

Oxygen

William Houlder Zachariasen (1906-1979)

Zachariasen, W.H., The atomic arrangement in glass. J. Am. Chem. Soc. 54 (1932) 3841

A₂O₃, AO₂, and A₂O₅ oxides met the above rules => good **glass former**

 A_2O , AO, AO_3 , A_2O_7 , etc., no glasses could be formed

Chalcogenide glass formers

Zachariasen enounced 4 rules to define what is a glass former (in oxides) Rule # 3 : **constituting polyhedra should share only corners !**

Co-existence of corner-sharing tetrahedra and edge-sharing tetrahedra Predominance of edge-sharing Td for SiS(e)₂ Predominance of corner-sharing Td for GeS(e)2

As a matter of fact, GeS_2 can be obtained rather easily (air quenching); SiS(e)₂ require fast quenching

Smekal model : co-existence of different types of forces Van der Waals + covalent

Zachariasen's random network (1932)

c-SiO₂

STEM images

Huang et al., Nano Lett. 12 (2012)1081

Free volume

Same number of atoms occupies different volume => different densities

Neuville & Cormier Mat. Techn. 110 (2022) 404

Structure of silica glass

Silica glass

Amorphous material Random network of SiO₄ tetrahedron

6-membered ring of SiO₄ tetrahedra

Rings of different size

Lichtenstein et al., J. Phys. Chem. C 116 (2012) 20426

Structure of 2D silica glass

Electronic structure

Si : (Ne) $3s^23p^2$: 4 valence electrons O : (He) $2s^22p^4$: 6 valence electrons

=> ions Si⁴⁺ (can share 4 bonds) => ions O²⁻ (can share 2 bonds)

B : $(He)2s^22p^1$: 3 valence electron => ions B³⁺ (can share 3 bonds) O : $(He)2s^22p^4$: 6 valence electron => ions O²⁻(can share 2 bonds)

Borate glass

 B_2O_3 composed primarily of CRN's of BO_3 units forming boroxol rings.

Intermediate between the micro-crystallite and the CRN models

About ~75% of B atoms are in boroxol rings

Neutron diffraction: Hannon *et al.*, J. Non-Cryst. Solids 177 (1994) 299 Ab initio simulations: Ferlat et al. Phys. Rev. Lett. 101 (2008) 065504

 \Rightarrow Importance of medium range order in GFA ?

Borate glass

Predictions of crystalline B₂O₃ forms

the boroxols allow one to maintain a low-energy structure while keeping a liquid-like density

Multicomponent oxide glasses

Zachariasen's rules do not consider at all modified oxides or multicomponent systems, or even non-oxide glasses

Zachariasen–Warren network theory

Bertram Eugene Warren 1902-1991

Multicomponent oxide glasses

Non-network formers (alkali, alkaline-earth, transition elements) decrease the network connectivity by forming non-bridging oxygens (NBO) (≠ bridging oxygens BO)

 \Rightarrow Network modifier

Multicomponent chalcogenide glasses

 $\Rightarrow Annie Pradel$ <u>USTV School - Cargese - 2017</u>

Chalcogenide glasses different from oxide glasses **Presence of edge-sharing Td** But also many similarities **Bridging vs non-bridging chalcogens Mixed glass former effect Mixed alkali effect**

Multicomponent borate glasses

Multicomponent borate glasses

Examples of units containing ^[3]B and ^[4]B

Examples of units containing only ^[3]B

Krogh-Moe in 1962 predicted the distribution of superstructural units in sodium borate glasses as a function of Na₂O content.

Individual BO₄ and BO₃ units forming structural grouping such as boroxol, diborate ... that exist in the crystalline compounds of the particular borate system. These larger (but sill quite small) units are then connected randomly to each other to form the glass structure.

Intermediate between the micro-crystallite and the CRN models

Multicomponent borate glasses

Lelong et al. J. Non-Cryst. Solids 472 (2017) 1

Multicomponent oxide glasses

Random network

Network modifiers have - high coordination numbers - a random distribution in the glass interstices

No information on medium range order

Structural models of covalent glasses

Modified random network model (Greaves, 1985) => Extension of the Zachariasen's model with regions rich in network formers and regions rich in modifiers

Deduced from EXAFS, neutron scattering data

Regions rich in modifiers

Regions rich in network formers

Relationships with conduction properties, alteration...

Glass may have heterogeneities (at the nanometer scale)

Homogeneity of glass

Electron microscopy

- Isotropy
- homogeneity ?

Nanoheterogeneities in glasses

Glass MgO-Al₂O₃-SiO₂-ZrO₂

Electron microscopy HAADF 🖙 chemical resolution

White regions = Zr-rich regions ⇒ non-homogeneous distribution of Zr ⇒ similarities with Greaves's model

Nanoheterogeneities in glasses

Regions rich in modifiers

Regions rich in network formers

White regions = Zr-rich regions ⇒ non-homogeneous distribution of Zr ⇒ similarities with Greaves's model

Nanoscopic order in glasses

Electron microscopy in HAADF mode

725

730

ZrCuAlY alloy chemically inhomogeneous

spinodal decomposition

Jiao et al., Chem. Materials 29(2017)4478

Submicrometer-scale spatial heterogeneity in **iron silicate** glasses

Burgess et al., Ameri. Mineral. 101(2016)2677

Yu et al. Asia Materials 8(2016)e318

Amorphous-amorphous separation (A-A)

Glass MAS+Zr+Zn

Dargaud et al., JNCS 358, 1257 (2012)

Amorphous-amorphous separation (A-A) and heterogeneities

Heterogeneities visible even without
 macroscopic A-A separation
 At which scale is there an A-A separation?

Aluminosilicate glasses

Al substitute to Si in tetrahedral position

Al : (Ne) $3s^23p^1$: 3 valence electrons => ions Al³⁺

(AlO₄)⁻ charge electroneutrality ensures by the presence of alkali or alkaline earth

Similar for (BO₄)⁻

Role of non-network forming cations

Cations connected to NBO associated to the negative charge of O⁻ = network modifier

Cations connected to BO And acting as charge compensator near $(AIO_4)^-$, $(BO_4)^-$... = charge compensator

Aluminosilicate glasses

 Proportion of ^[5]Al depends on cation field strength

 $F_s = Z_C / a^2$

 Z_{C} = valence of the cation a is the distance between cation and oxygen

- Proportion of ^[5]Al affects properties (ex : mechanical properties)
- Competition for charge compensator between Al and B ...

Phosphate glasses

P in tetrahedral position

 $P: (Ne)3s^23p^3: 5$ valence electron => ions P^{5+}

Oxygen position in glass structure:

- bridging oxygen
- non-bridging oxygen
- terminal oxygen

Invert glasses

Y = NBO/T = Nbre d'O pontant par tétraèdre (Y=6-200/p with p the mol% of SiO₂)

 SiO_2 Y=43D network $R_2O-2SiO_2$ Y=33D network R_2O-SiO_2 Y=2 (metasilicate = SiO_4 chains)

After Zachariasen's hypothesis, glasses with Y<3 are not possible

For Y<2, it is named invert glass

Importance of free oxygens in those compositions Free-oxygen : oxygen not bonded to any network-former Oxygen position in glass structure:

- bridging oxygen
- non-bridging oxygen
- terminal oxygen
- free oxygen

Glasses with non glass formers

Neither R_2O or TiO_2 can form a glass individually But possibility to form R_2O - TiO_2 glasses $(1-x)R_2O$ - $xTiO_2$ with x=34-75 mol% and R=K, Rb, Cs

In particular orthotitanate : 2R₂O-TiO₂

Also calcium aluminate : 61CaO-39Al₂O₃

Which one is the glass former ?

Network former or modifier ? The case of Pb²⁺

xPbO (100 x)SiO₂ x = 90, 67, 50, 33, 25

40-60 mol% PbO

Takahashi et al., J. Am. Ceram. Soc., 88 (2005) 1591

Case of Pb

High PbO content

PbO acts as a network former consisting of PbO_3 trigonal pyramids

PbO₃ trigonal pyramids are linked to each other by edge sharing to form Pb–O–Pb network => Pb₂O₄ units

$6p^2$ lon Pb^{2+}

Pb atom tends to have small coordination numbers differing from other divalent elements

 \Rightarrow reason that PbO is a good glass forming material ?

Structure of metallic glasses

Energetic Stability: Clusters

clusters lead to energetic stability

prevalence of efficiently-packed clusters (low free volume and energy) that do not have symmetry suitable for crystal formation explain the stability of supercooled liquids icosahedrally-coordinated atomic clusters are the probable clusters for pure liquids

 $\Rightarrow The Zachariasen's rule do not applied$ $\Rightarrow Possible to talk of network former ?$

Structure of metallic glasses

Principle : hard sphere dense random packing

- \Rightarrow random packing of spheres
- \Rightarrow Importance of free volume
- \Rightarrow metallic glasses: minimization of free volume

Principle of confusion

A more complicated chemical composition translate into a greater number of compounds that could nucleate and, thus, in mutual competition such that crystal nucleation and growth is frustrated and does not take place on sufficiently rapid cooling $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$

Tang et al., Nature 402, 160 (1999)

Mixing various elements with different sizes

Metal (Fe,Ni,Al,Cr,Pd) Metalloids (P,Si,B,Ge)

From 'Silicate glasses and melts: properties and structure' Mysen & Richet (2005)

Structure of metallic glasses

+ medium range order (2006)Stacking of blocks with 5-fold symmetry

Sheng et al., Nature 439, 419(2006)

icosaedron

Miracle, Nature Materials 2004 Yavari, Nature Materials 2005 Sheng et al, Nature 2006 Yavari, Nature 2006

How to determine the structure ?

How to determine the structure ?

		Local order	Medium range order	Nanoscale	Redox	Elements	Chemically selective	Sensitivity
Diffraction - Vide & small angle	Neutron + isotopic	X	X	X		All Difference in neutron	V	Few percents
	X-ray + Anomalous	X X	X	X X		scattering lengtn ≥ Li	X	Few percents
-	scattering	Х	Х	Х		≥ Fe	Х	Few percents
XANES (synchrotron /lab) EELS (electron microscope)		Х			Х	All elements ≥ Li	Х	10 ppm to few percents
EXAFS (synchrotron /lab)		х	(X)			All elements ≥ Li	х	100 ppm to few percents
Raman		Х	Х			Active modes		Few percents
IR		Х	Х			Active modes		Few percents
Mössbaue	r	х			х	Typically Fe, Sn, Sb	х	Few percents, isotopic enrichment
Optical abs	sorption ppy	х			х	Transition metal - Rare- earths Plasmon resonance		ppm to few percents
NMR		х	х			Some elements Isotope with non-zero spin		Few percents, isotopic enrichment
EPR		Х			Х	Unpaired radicals or free radicals (Ex : Fe, Cu, defects)		ppm to few percents
Electron microscope				Х		,		

LE STUDIUM CONFERENCES ORLÉANS | 2024

24-27 September 2024 **13th International Symposium** on Crystallization in Glasses and Liquids

LOCATION

Hôtel Dupanloup 1, rue Dupanloup 45000 Orléans - FR

TOPICS

- Fundamental approaches to nucleation and crystal growth in glasses and liquids
- Simulations, modelling, theory, contribution of artificial intelligence
- Developments and novel nucleation/ crystallization processes
- Crystallisation phenomena in natural glasses/melts and amorphous materials
- · Relationships between glass structure and nucleation
- Liquid phase separation, heterogeneities -Role of nucleating agents
- Advanced characterisation methods. techniques and characterization tools
- Relationships between microstructures and properties of glass-ceramics
- New glass-ceramics and applications
- Environmentally-friendly glass-ceramics
-

registration@lestudium-ias.fr www.lestudium-jas.com

Co-funded by the

ORLÉANS

13th International Symposium on **Crystallization in Glasses and Liquids** September 24, 2024 - September 27, 2024 Orléans, France

Organized by TC7

Participate

References

http://www.lehigh.edu/imi/teched/OPG/lecture2.html

https://www.lehigh.edu/imi/teched/GlassCSC/Lecture_2_Martin.pdf

https://www.lehigh.edu/imi/teched/AtModel/Lecture_2_Micoulaut_Atomistics_Glass _Course.pdf

http://web.mst.edu/~brow/pdf_structure1.pdf

www.eng.uokufa.edu.iq/staff/sawsandh/Polymers.ppt

www.phy.bme.hu/Kristalyos_es_amorf.../Introduction.ppt