Introduction to the structure and the structural role of elements in glasses

Laurent Cormier

Institut de Minéralogie, Physique des Matériaux et Cosmochimie Université Pierre et Marie Curie – CNRS Paris, France

cormier@impmc.upmc.fr

Ecole GDR Verres Cargèse

Glass forming ability (GFA)

In principle almost any substance can be made into a glass by cooling it from the liquid state **if cooled sufficiently fast** to prevent crystallization. In practice, however, it seems useful to make some classification scheme.

No theories able to predict which materials are able to form a glass, and under

what conditions

Ranges of glass formation in binary systems (after Imaoka [13])

<u>Metal</u> oxide	Mol %			
	$B_2O_3^{a}$	SiO ₂ ^b	GeO2 ^c	$P_2O_5^d$
Li ₂ O	100 57.3	100-64.5	100-76.2	100-40
Na ₂ O	100-62.0 33.5 28.5	100-42.2	100-62	100-40
K ₂ O	100 - 62.3	100-45.5	100-40.5	100 - 53
$T\tilde{l_2}O$	100-55.5		100-52.5	100-50
MgO	57.0 55.8	*100- 57.5		100 - 40
CaO	72.9 58.9	*100-43.3	84.5-64.5	100-46
SrO	75.8 57.0	*100-60	86-61	100 - 46
BaO	83.0 60.2	*100-60	100 90	100 - 42
			82.5 - 70.4	
ZnO	56.0 36.4		100-52	100-36
CdO	60.9-45.0			100-43
PbO	80.0-23.5		100-43	100-38
Bi_2O_3	78.0 37.0		100-66	

^a 1-3 g material melted in Pt crucible and allowed to cool freely in air.

^b 1-2 g material – as above.

From 'Chemistry of glasses' Paul (2012)

c = 1 - 3 g melt as above.

^d 1-3 g melt as above.

* Involves extensive liquid liquid phase separation.

Glass formation results when

- Liquids are cooled to below $T_M(T_L)$ sufficiently fast to avoid crystallization
 - $\circ~$ Nucleation of crystalline seeds are avoided
 - o Growth of nuclei into crystallites (crystals) is avoided

 \Rightarrow Kinetic theory of glass formation (Turnbull and Cohen, 1960)

From glass to crystal -Nucleation, growth and phase separation: from research to applications (2017) D.R. Neuville, L. Cornier, D. Caurant, L. Montagne

• Liquid is frustrated by internal structure that hinders both events

Competition between crystalline growth and cooling of the melt.

Quantitative estimate through timetemperature-transformation (TTT) curves

How much time does it take at any one temperature for a given fraction of the liquid to transform (nucleate and grow) into a crystal?

Critical cooling rate R_c = the nose of the TTT curve T

$$R_C = \frac{T_f - T_n}{t_n}$$

Good glass formers: q = dT/dt ~ 10⁻³ K/s Bad glass formers: q = dT/dt > 10⁶ K/s

Competition between crystalline growth and cooling of the melt.

Good glass formers: q = dT/dt ~ 10⁻³ K/s Bad glass formers: q = dT/dt > 10⁶ K/s

Quantitative estimate through timetemperature-transformation (TTT) curves

How much time does it take at any one temperature for a given fraction of the liquid to transform (nucleate and grow) into a crystal?

Critical cooling rate R_c = the nose of the TTT curve

$$R_C = \frac{T_f - T_n}{t_n}$$

Uhlmann, J. Phys. Coll., 43 (1982) C9-175-C9-190

In a multicomponent material like the SiO_2 - Na_2O glass (c), the question of the **region of** glass formation arises:

how much Na₂O can be added to SiO₂, while still keeping the glass forming ability of the system?

What is the region of glass formation ?

1.3. Network structure of SiO_4^{4+} tetrahedrons: (a) quartz crystal, (b) quartz glass, (c) sodium silicate glass (Ref. 5).

Glass forming region

Determination of glass forming region after extensive studies in compositions

Musgrave et al., J. Non-Cryst. Solids, 386 (2014) 61

Richet et al., Chem. Geol. 225 (2006) 388

Neuville et al., Chem. Geol. 229 (2006) 173

Glass forming region

In a phase diagram, glasses are favored near eutectics because these freezing depressions bring the liquid to higher viscosities at lower temperatures

Correlation between critical cooling rate and viscosity along the liquidus branche

Critical cooling rates for glass formation in sodium and potassium silicates. Data from Fang et al. (1983) for a crystal fraction of less than 10^{-6} . The arrows indicate the position of the deepest eutectics of the binary systems shown in Fig. 5.

Richet et al., Chem. Geol. 225 (2006) 388

The combined effects of composition and temperature on viscosity along liquidus branches in alkali silicate systems. (a) Viscosity of sodium silicate melts at 1200 °C (Bockris et al., 1955; Leko et al., 1977). (b) Viscosity of alkali silicate melts along the liquidus branches of Fig. 5. Data from Poole (1948) and Bockris et al. (1955). The arrows indicate the positions of the deepest eutectics of the binary systems.

\Rightarrow Daniel Neuville

Structural approach to glass-forming ability (GFA)

What internal structures promote glass formation?

How can structures be developed that increase the viscosity and frustrate crystallization processes?

Structural approach to glass formation

Several models encompass most of the relevant aspects which are known to lead to glass formation:

- Based on coordination number
- Goldschmidt's radius ratio
- Zachariasen's random network theory
- Based on bond type
- Smekal's mixed bonding rule
- Stanworth's electronegativity rule
- Based on bond strength
- Sun's single bond strength criterion
- Based on field strength
- Dietzel's field strength
- Based on Mott's rule
- Phillips

Different structural ranges

Short range order (<3 Å):

– coordination, bond length, bond angle
– homopolar (-Se - Se- , -C - C-, -As - As) vs.
heteropolar (Si - O, B - O, Ge - S)

Medium (intermediate) range order (3 – 10 Å typically):

- angles between structural units
- connectivity between structural units (linkages by corner, edge, face)
- dimensionnality, rings

Almost no long range order (no periodicity!) :

- phase separation
- inhomogeneities

Topological and chemical disorder

Salmon et al., Nature 435 (2005) 75-78

Structural model

A good structural model should

- explain structure-properties relationships
- describe atomic arrangements at short and medium range
- have general concepts applicable to a large number of systems

Initially, idea of micro-crystallites (quasi-crystals) but it was demonstrated that the size of these crystals is 7-8 Å (size of the unit cell) !

crystallite model of Lebedev

Structural approach to glass formation

Several models encompass most of the relevant aspects which are known to lead to glass formation:

- Based on coordination number
- Goldschmidt's radius ratio
- Zachariasen's random network theory
- Based on bond type
- Smekal's mixed bonding rule
- Stanworth's electronegativity rule
- Based on bond strength
- Sun's single bond strength criterion
- Based on field strength
- Dietzel's field strength
- Based on Mott's rule
- Phillips

Goldschmidt's radius ratio criterion

for a simple oxide of formula $M_m O_n$ (M cation), glass formation is only possible when the ratio of atomic radii, r_a/r_c (where c denotes cation, and a anion) falls between 0.2 to 0.4

the cation / anion ratio determines how many anions can be packed around a given cation, i.e. the coordination number of the compound. Most crystals with a cation / anion radius ratio of 0.2 to 0.4 have a co-ordination number (CN) of 4 with anions at the corners of a tetrahedron

=

tetrahedral arrangement of oxygen ions around a cation M necessary for glass formation assumed the oxide is purely ionic (not strictly correct as many glass-forming

oxides have covalent character, e.g. SiO₂)

Goldschmidt's radius ratio criterion

Radius ratios for typical glass forming compounds (W. Vogel, Glass Chemistry, 1992, p41, Springer-Verlag).

Radius ratios (r _c :r _a)
$r_{Si}:r_{O} = 0.39 \text{ Å}:1.4 \text{ Å} \cong 0.28$ $r_{B}:r_{O} = 0.20 \text{ Å}:1.4 \text{ Å} \cong 0.15$ $r_{P}:r_{O} = 0.34 \text{ Å}:1.4 \text{ Å} \cong 0.25$ $r_{Ge}:r_{O} = 0.44 \text{ Å}:1.4 \text{ Å} \cong 0.31$ $r_{Be}:r_{F} = 0.34 \text{ Å}:1.36 \text{ Å} \cong 0.25$

condition is fulfilled in the case of SiO₂, B₂O₃, P₂O₅, GeO₂ and BeF₂

BeO with $r_{Be}/r_{O} \sim 0.221$ but does not form a glass

Structural approach to glass formation

Several models encompass most of the relevant aspects which are known to lead to glass formation:

- Based on coordination number
- Goldschmidt's radius ratio
- Zachariasen's random network theory
- Based on bond type
- Smekal's mixed bonding rule
- Stanworth's electronegativity rule
- Based on bond strength
- Sun's single bond strength criterion
- Based on field strength
- Dietzel's field strength
- Based on Mott's rule
- Phillips

Zachariasen's random network theory

This theory, strictly applicable to oxide glasses only in its original form, sometimes referred to as the *crystallochemical theory*; it led to the model known as the 3-D **continuous random network** (3-D **CRN**) model.

Basic postulates:

- interatomic forces similar in glass and corresponding crystal
- glass is in a slightly higher energy state
- nearest neighbor coordination polyhedra similar in glass and crystal
- nature of interatomic bonds similar in glass and corresponding crystal

William Houlder Zachariasen (1906-1979)

Zachariasen, W.H., The atomic arrangement in glass. J. Am. Chem. Soc., 54 (1932) 3841

Zachariasen's rules for glass formation

 Each oxygen atom is linked (bonded) to no more than two glass-forming cations (e.g. Si⁴⁺);
 Oxygen coordination number (CN) around glass-forming cation is small: 3 or 4;
 Cation polyhedra share corners, not edges or faces;

4. The polyhedral structural units form a **3-D continuous random network** in which every polyhedron shares at least 3 corners with its neighbors.

Network former: Si, Ge, P, B, ...Oxygen

 A_2O_3 , AO_2 , and A_2O_5 oxides met the above rules => good **glass former** A_2O , AO, AO_3 , A_2O_7 , etc., no glasses could be formed

Zachariasen model (1932)

c-SiO₂ a-SiO₂

STEM images

Huang et al., Nano Lett. 12 (2012)1081

Structural model of covalent glasses

Structural units

In silicate such as SiO₂: SiO₄ tetrahedra

Same basic structural unit for the glass and the crystal

Electronic structure:

Si : (Ne) $3s^23p^2$: 4 valence electrons O : (He) $2s^22p^4$: 6 valence electrons

=> ions Si⁴⁺ (can share 4 bonds) => ions O²⁻ (can share 2 bonds)

B : (He) $2s^22p^1$: 3 valence electron => ions B³⁺ (can share 3 bonds) O : (He) $2s^22p^4$: 6 valence electron => ions O²⁻(can share 2 bonds)

Borate glass

 B_2O_3 not composed primarily of CRN's (continuous random network) of individual BO_4 and BO_3 units. These small units form structural grouping such as boroxol, diborate ... that exist in the crystalline compounds of the particular borate system. These larger (but sill quite small) units are then connected randomly to each other to form the glass structure.

Intermediate between the micro-crystallite and the CRN models

About ~75% of B atoms are in boroxol rings

Neutron diffraction: Hannon *et al.*, J. Non-Cryst. Solids 177 (1994) 299 Ab initio simulations: Ferlat et al. Phys. Rev. Lett. 101 (2008) 065504

the boroxols allow one to maintain a lowenergy structure while keeping a liquidlike density

 \Rightarrow Importance of medium range order in GFA ?

 \Rightarrow Gerald Lelong

Medium range order – inhomogeneities in glasses

Introduce for the first time the notion of inhomogeneities in glasses

crystallite model of Lebedev

Zachariasen's rules do not consider at all modified oxides or multicomponent systems, or even non-oxide glasses

Zachariasen–Warren network theory

Bertram Eugene Warren 1902-1991

Non-network formers (alkali, alkaline-earth, transition elements) decrease the network connectivity by forming non-bridging oxygens (NBO) (≠ bridging oxygens BO)

 \Rightarrow Network modifier

Random network

Network modifiers havehigh coordination numbersa random distribution in the glass interstices

No information on medium range order

Modified random network - MRN (Greaves, 1985)

Zones rich with network modifiers

Zones rich with network formers

Relationships with conductivity, alteration etc

Figure 4-2: Représentation bi-dimensionnelle d'un réseau silicaté a) d'après le modèle CRN (Continuous Random Network) de Zachariasen, 1932, b) d'après le modèle MRN (Modified Random Network) de Greaves et al., 1981.

Aluminosilicate glasses

Al substitute to Si in tetrahedral position

Al : (Ne) $3s^23p^1$: 3 valence electrons => ions Al³⁺

(AlO₄)⁻ charge electroneutrality ensures by the presence of alkali or alkaline earth

Similar for $(BO_4)^-$

Role of non-network forming cations

Cations connected to NBO associated to the negative charge of O⁻ = network modifier

Cations connected to BO And acting as charge compensator near $(AIO_4)^-$, $(BO_4)^-$... = charge compensator

Phosphate glasses

P in tetrahedral position

 $P: (Ne)3s^23p^3: 5 \text{ valence electron} => ions P^{5+}$

Oxygen position in glass structure:

- bridging oxygen
- non-bridging oxygen
- terminal oxygen

 \Rightarrow Francisco Munoz & Lionel Montagne

Invert glasses

Y = NBO/T = Nbre d'O pontant par tétraèdre (Y=6-200/p with p the mol% of SiO₂)

 SiO_2 Y=43D network $R_2O-2SiO_2$ Y=33D network R_2O-SiO_2 Y=2 (metasilicate = SiO_4 chains)

After Zachariasen's hypothesis, glasses with Y<3 are not possible

For Y<2, it is named invert glass

Importance of free oxygens in those compositions Free-oxygen : oxygen not bonded to any network-former Oxygen position in glass structure:

- bridging oxygen
- non-bridging oxygen
- terminal oxygen
- free oxygen
 - \Rightarrow Louis Hennet
 - \Rightarrow Grant Henderson

Glasses with non glass formers

Neither R_2O or TiO_2 can form a glass individually But possibility to form R_2O - TiO_2 glasses $(1-x)R_2O$ - $xTiO_2$ with x=34-75 mol% and R=K, Rb, Cs

In particular orthotitanate : 2R₂O-TiO₂

Which one is the glass former?

Network former or modifier ? The case of Pb²⁺

xPbO (100 x)SiO₂ x = 90, 67, 50, 33, 25

40-60 mol% PbO

Takahashi et al., J. Am. Ceram. Soc., 88 (2005) 1591

Network former or modifier ? The case of Pb²⁺

Low PbO content

- PbO_3+_3 unit is dominant
- Pb₂O₄ units participate in the glass network constructed

High PbO content

PbO acts as a network former consisting of PbO₃ trigonal pyramids
Case of Pb

High PbO content

PbO acts as a network former consisting of PbO_3 trigonal pyramids

 PbO_3 trigonal pyramids are linked to each other by edge sharing to form Pb–O–Pb network => Pb_2O_4 units

6p² Ion Pb²⁺

Pb atom tends to have small coordination numbers differing from other divalent elements

 \Rightarrow reason that PbO is a good glass forming material ?

Limitations of Zachariasen's rules

- apply only to oxide glasses
- there are several exceptions to the rules, such as:
- non-oxide glasses (e.g. fluoride and metallic glasses)
- some oxides ruled out by Zachariasen, such as Al-lime can in fact form glasses
- chain-like glass structures (e.g., metaphosphate glasses)

Strong points of Zachariasen's model

- predicts the existence of the main oxide glass formers (SiO₂, GeO₂, B₂O₃, P₂O₅, ...) and glass modifiers (Na₂O, CaO, ...)
- suggests the existence of bridging oxygen (BO) and non-bridging oxygen (NBO) species

Structural approach to glass formation

Several models encompass most of the relevant aspects which are known to lead to glass formation:

- Based on coordination number
- Goldschmidt's radius ratio
- Zachariasen's random network theory
- Based on bond type
- Smekal's mixed bonding rule
- Stanworth's electronegativity rule
- Based on bond strength
- Sun's single bond strength criterion
- Based on field strength
- Dietzel's field strength
- Based on Mott's rule
- Phillips

Smekal's mixing bond

Pure covalent bonds incompatible with random arrangement (sharply defined bond-lengths and bond-angles) Purely ionic or metallic bonds lack any directional characteristics

 \Rightarrow Presence of 'mixed' chemical bonding necessary

- inorganic compounds, e.g. SiO₂, B₂O₃, where the A-O bonds are partly covalent and partly ionic
- Elements (S, Se) having chain structures with covalent bonds within the chain and van der Waal's forces between the chains
- organic compounds containing large molecules with covalent bonds within the molecule and van der Waal's forces between them

Adolf Gustaf Smekal (1895–1959)

Stanworth's electronegativity criterion

the electronegativity of the cations, of which the oxides are glass-forming, fall within a certain range between 1.90 and 2.20

Electronegativities of good glass forming oxides and network modifiers

Element	Pauling electronegativity		
Glass	network formers		
Те	2.1		
В	2.0		
Si	1.8		
Р	2.1		
Ge	1.7		
As	2.0		
Sb	1.8		
Glass	network modifiers		
Li	1.0		
Na	0.9		
K	0.8		

Stanworth's electronegativity criterion

 Table 1. Degree of ionicity of chemical bonds and oxygen bridges

Cation-oxygen bond	i _G	i _P	
Na–O	0.807	0.832	
Ca–O	0.707	0.794	
Mg–O	0.670	0.712	
Al–O	0.546	0.603	
В-О	0.476	0.535	
Si–O	0.428	0.488	
Р–О	0.314	0.350	
Oxygen bridge	i _G	$\Delta i_{ m G}$	
Na–O–P	0.560	0.493	
Ca–O–P	0.510	0.393	
Mg–O–P	0.492	0.293	
Al-O-P	0.430	0.232	
B-O-P	0.395	0.162	
Si-O-P	0.377	0.114	
P–O–P	0.314	0.000	
Na–O–Si	0.617	0.379	
Ca–O–Si	0.567	0.279	
Mg–O–Si	0.549	0.179	
Al–O–Si	0.487	0.121	
B–O–Si	0.452	0.048	
P–O–Si	0.377	-0.114	
Al-O-Na	0.676	0.261	
Al–O–Ca	0.629	0.161	
Al-O-B	0.511	0.070	
Si–O–B	0.453	0.048	
P–O–B	0.395	-0.162	

 $i_{\rm G}$ is the Gorlich degree of ionicity of cation-oxygen bonds, $i_{\rm P}$ is the Pauling degree of ionicity of cation-oxygen bonds, $i_{\rm G}$ is the mean degree of ionicity of cation-oxygen bonds, and $\Delta i_{\rm G}$ is the difference in the degrees of ionicity of cation-oxygen bonds. Mixed bond :

Si-O : ionic character of ~45%

Similar for other network formers

But

Be-F : 75% ionic character but BeF_2 form a glass Ge-Se : 12% ionic character but GeS_2 form a glass As-S : 5% ionic character but As_2S_3 form a glass

Stoch, Glass Phys. Chem. 27 (2001) 167

Stanworth's electronegativity criterion

TABLE 8. Electronegativities of some anion formers.		Si-O : ionic character of ~45%			
Elemen	t Electronegativity	Similar for other network formers			
O S Se Te F Cl Br J ¹⁰⁰ 90 80 70 60 50 40 30 20 10	3.5 2.5 2.4 2.1 4.0 3.0 2.8 2.4	But Be-F : 75% ionic character but BeF ₂ form a glass Ge-Se : 12% ionic character but GeS ₂ form a glass As-S : 5% ionic character but As ₂ S ₃ form a glass			
0	1 2 3 Electronegativity Difference	4 From 'Le verre' Scholze (1980)			

% Ionic Character

Structural approach to glass formation

Several models encompass most of the relevant aspects which are known to lead to glass formation:

- Based on coordination number
- Goldschmidt's radius ratio
- Zachariasen's random network theory
- Based on bond type
- Smekal's mixed bonding rule
- Stanworth's electronegativity rule
- Based on bond strength
- Sun's single bond strength criterion
- Based on field strength
- Dietzel's field strength
- Based on Mott's rule
- Phillips

Sun's bond strength model

Glass formation is brought about by both

- Connectivity of bridge bonds
- Strong bonds between atoms (ions)

Sun classified oxide according to their bond strengths

- Glass formers form strong bonds to oxygen rigid network ,high viscosity
- Modifiers form weak bonds to oxygen disrupt, modify network
- Intermediates form intermediate bonds to oxygen can't form glasses on their own, but aid with other oxides to form glasses

Sun's bond strength model

Sun's criterion: energy criterion

- Establishes a correlation between **glass forming tendency** and the **bond energies** of elements with the anion atom in the glass

Dissociation energy of oxides into gaseous elements:

 $E_{d}^{MOx} = |1/m\Delta H^{o}_{f}(M_{m}O_{n},c) - \Delta H^{o}_{f}(M,g) - n/m\Delta H^{o}_{f}(O,g)|$

 E_d refers to a mol of M in $MO_{n/m}$.

 $E_{b} = E_{d} / CN$ is called the **single bond strength**

The basic idea behind this model is that, when a melt is quenched to form a glass, the stronger the M-O bonds, the more difficult are the structural rearrangements necessary for crystallization and, hence, the easier is glass formation

Sun's bond strength model

The higher the bond strength, the better the glass former

- Single bond strength > 80kcal/mol => network former Greater than 80 kcal/mole bond strength with oxygen B₂O₃, SiO₂, Geo₂, P₂O₅, Al₂O₅....
- Single bond strength < 60kcal/mol => network modifier Less than 60 kcal/mole bond strength with oxygen Li₂O, Na₂O, K₂O, MgO, CaO....
- Single bond strength 60 ≤ strength ≥ 80 => intermediate Between 60 to 80 kcal/mol bond strength with oxygen TiO₂, ZnO, PbO....

	M in MO _x	Valence	Dissociation energy $E_{d'}$ per MO _x (kcals)	Coordination number ^b	Single-bond strength (kcals)
Glass	В	3	356	3	119
formers	Si	4	424	4	106
	Ge	4	431	4	108
	Al	3	402-317	4	101-79
	В	3	356	4	89
	Р	5	442	4	111 - 88
	v	5	449	4	112-90
	As	5	349	4	87-70
	Sb	5	339	4	85-68
	Zr	4	485	6	81
Intermediates	Ti	4	435	6	73
	Zn	2	144	2	72
	Pb	2	145	2	73
	Al	3	317-402	6	53–67
	Th	4	516	8	64
	Be	2	250	4	63
	Zr	4	485	8	61
	Cd	2	119	2	60
Modifiers	Sc	3	362	6	60
	La	3	406	7	58
	Y	3	399	8	50
	Sn	4	278	6	46
	Ga	3	267	6	45
	In	3	259	6	43
	Th	4	516	12	43
	Pb	4	232	6	39
	Mg	2	222	6	37
	Li	1	144	4	36
	Pb	2	145	4	36
	Zn	2	144	4	36
	Ba	2	260	8	33
	Ca	2	257	8	32
	Sr	2	256	8	32
	Cd	2	119	4	30
	Na	1	120	6	20
	Cd K	2	119	6 9	20
glasses'	K Rb	1	115		13
-	Rb Hg	1 2	115 68	10 6	12 11

Table 3-2.	Single	Bond	Strengths	for	Oxides ^a
------------	--------	------	-----------	-----	---------------------

From 'Fundamentals of inorganic glasses Varshneya (2013)

Case of Al³⁺

 Al_2O_3 satisfied Zachariasen's criteria but Al_2O_3 does not form a glass

According to Sun's criteria

E_d = 317-402 kcals

CN =479 < E_{Sun} < 101kcal mol⁻¹CN =563 < E_{Sun} < 80kcal mol⁻¹CN =653 < E_{Sun} < 67kcal mol⁻¹

No Al₂O₃ glass can be formed

But formation of 3CaO-2Al₂O₃ glass

network former ? modifier ?

Limitations of Sun's criteria

 Exclusion of the chalcogenide glasses
 Bond strength ~40kcal.mol along the chains (covalent bond) and less between the chains (van der Waals forces)

Strong points of Sun's criteria

- Introduce the notion of intermediate

Structural role

Cations in the glass were catagorized according to their role in the glass network

Network former

- Can form a glass network alone
- Strong directional bonding
- Example: Si⁴⁺, B³⁺, P⁵⁺, Ge⁴⁺, As³⁺, Be²⁺, with CN of 3 or 4

Network modifier

- Break the linkages between network formers
- More ionic bonding
- Example: Na⁺, K⁺, Ca²⁺, Ba²⁺, with CN ≥ 6

Intermediates (conditional network former)

- May reinforce (CN = 4) or further loosen the network further (CN 6 to 8)
- Can substitute to a network former but cannot form a glass per se
- Example: Al₂O₃, TiO₂, Ga₂O₃, As₂O₃, Sb₂O₃, Bi₂O₃, TeO₂, V₂O₅, MoO₃, WO₃

Structural role

Structural role of constituents; in view of Coulombic interaction

An interesting intermediate class of oxide including TeO_2 , MoO_3 , Bi_2O_3 , Al_2O_3 , Ga_2O_3 and V_2O_5 do not by themselves form glasses but will do so when mixed with other (modifier) oxides

Rawson's criteria

- Ratio of the bond strength to the energy available at the freezing point ($\sim 3/2 T_m$)
- Glass formation is better correlated with E_b/T_m , where T_m is the melting temperature, and $E_b/T_m > 0.05$ for glass forming systems
- The higher the value, the lower the probability for bonds to break at Tm, and hence the higher the tendency for glass formation
- Point out the significance of the liquidus temperature
- \Rightarrow eutectic favors glass formation

Vitrification if high bond strength with a liquidus temperature with the lowest possible melting temperature

 $\begin{array}{ll} \text{SiO}_2: \text{E}_{\text{b}} = 106 \text{ kcals mol}^{-1} & \text{Tm} = 1600^{\circ}\text{C} & \text{E}_{\text{b}}/\text{Tm} = 0.066 \\ \text{ZrO}_2: \text{E}_{\text{b}} = 81 \text{ kcals mol}^{-1} & \text{Tm} = 2715^{\circ}\text{C} & \text{E}_{\text{b}}/\text{Tm} = 0.030 => \text{ cannot form glass due to its} \\ \text{high melting point} & & \\ \text{B}_2\text{O}_3: \text{E}_{\text{b}} = 119 \text{ kcals mol}^{-1} & \text{Tm} = 450^{\circ}\text{C} & \text{E}_{\text{b}}/\text{Tm} = 0.264 => \text{never crystallizes} \end{array}$

Extension of Rawson's criteria

ThRGFA = $E_{Sun}/(T_m.C_p)$

Table 1. Parameters and GFA criteria values of some oxides.

						Criteria		
$E_x O_y$	Ι	<i>E</i> _d (kJ/mole)	<i>T</i> _m (K)	C_p (kJ/mole·K)	Sun (kJ/mole)	Rawson (kJ/mole·K)	ThRGFA $\times 10^3$	Group
As ₂ O ₅	4	1458.82	388	144.386	364.705	0.939961	6.510020	Glassformer
PbO ₂	4	970.7	563	73.377	242.675	0.431039	5.874252	oxides
SeO ₂	4	950.5	613	72.065	237.625	0.387642	5.379057	
MoO ₃	4	2307.36	1073	108.164	576.84	0.537595	4.970183	
B_2O_3	4	1488.08	723	109.806	372.02	0.514550	4.68595	
GeO ₂	4	1801.58	1389	82.615	450.395	0.324258	3.924898	
TeO ₂	4	1136.96	1006	79.834	284.24	0.282544	3.539136	
Sb_2O_5	4	1417.02	798	138.351	354.255	0.443928	3.208692	
SiO ₂	4	1772.32	1999	69.844	443.08	0.221650	3.173493	
SnO_2	4	1162.04	1902	52.599	290.51	0.152739	2.903800	
V_2O_5	4	1876.82	943	181.238	469.205	0.497566	2.745363	
P_2O_5	4	1847.56	853	213.368	461.89	0.541488	2.537814	
WO ₃	6	2583.24	1745	115.866	430.54	0.246727	2.129415	
Ta_2O_5	4	2429	2173	135.082	607.25	0.279452	2.068749	
Tl_2O_3	4	1172	1107	139.322	293	0.264679	1.899759	
Bi ₂ O ₃	4	969	1040	135.491	242.25	0.232932	1.719172	
Nb_2O_5	4	2298.5	1783	188.578	574.625	0.322279	1.709000	
TiO ₂	6	1820	2236	86.448	303.333	0.135658	1.569241	Intermediate
BeO	4	1046	2853	70.715	261.5	0.091656	1.296154	oxides
Al_2O_3	4	1504.8	2327	141.131	376.2	0.161667	1.145512	
ZrO ₂	6	2027.3	2983	99.063	337.883	0.113269	1.143402	
ZnO	4	601.92	2248	61.723	150.48	0.066939	1.084502	
CuO	8	794.3	1599	60.472	99.287	0.062093	1.026800	
PdO	8	498	1143	53.347	62.25	0.054461	1.0208	
Ag ₂ O	12	424.5	503	72.848	35.375	0.070328	0.96540	
FeO	8	933.5	1651	74.405	116.687	0.070676	0.94988	
PtO	8	1500	1895	104.9	187.5	0.098944	0.943227	
NiO	8	919.6	2228	56.127	114.95	0.051593	0.91921	
Cr_2O_3	4	1340.35	2673	150.963	335.087	0.125360	0.830397	
MnO	8	894	2148	63.919	111.75	0.052025	0.81391	
CoO	8	911.3	2078	67.480	113.912	0.054818	0.812362	
CaO	8	1074.26	2888	62.50	134.282	0.046496	0.74394	Modifier
Li ₂ O	4	603	1974	104.642	150.75	0.076367	0.729800	oxides
SrO	8	1070.08	2733	67.333	133.76	0.048942	0.726872	
BaO	8	1087	2191	87.843	135.875	0.062015	0.705974	
CdO	8	497.42	1774	53.524	62.177	0.035049	0.654825	
Ga_2O_3	6	1107.76	2068	144.807	184.626	0.089277	0.616526	
MgO	8	928.8	3099	61.177	116.1	0.037463	0.612380	
HgO	8	284.24	1098	62.734	35.53	0.032358	0.515809	
Na ₂ O	6	502	1405	117.398	83.667	0.059549	0.507240	
K ₂ O	8	480.7	1050	115.437	60.087	0.057226	0.495735	

Boubata Bull. Mater. Sci. 36(2013)457

Extension of Rawson's criteria

ThRGFA = $E_{Sun}/(T_m.C_p)$

Structural approach to glass formation

Several models encompass most of the relevant aspects which are known to lead to glass formation:

- Based on coordination number
- Goldschmidt's radius ratio
- Zachariasen's random network theory
- Based on bond type
- Smekal's mixed bonding rule
- Stanworth's electronegativity rule
- Based on bond strength
- Sun's single bond strength criterion
- Based on field strength
- Dietzel's field strength
- Based on Mott's rule
- Phillips

Sun classifies Al as both a network former and an intermediate

- Al₂O₃ does not form glass at normal quenching rates
- More factors are important than just bond strength
 - Small cations with high charge network formers
 - Large cations with small charges modifiers
 - Medium size cations with medium charge intermediates

By extending Goldschmidt's original consideration of glass formation to radius and charge of the constituent atoms / ions, Dietzel classified elements according to their field strength, F_s

This considers the forces (attraction / repulsion) between cations and anions in the glass

$$F_{s} = Z_{C} / (r_{c} + r_{a})^{2}$$

r = ionic radius of the cation (c)
or anion (a)

$$F_s = Z_c / a^2$$

Z_c = valence of the cation a is the distance between cation and oxygen

 $F_s = Z_c / a^2$

 Z_{C} = valence of the cation a is the distance between cation and oxygen

Classify	Z_c/a^2
Former	> 1.3
Intermediate	0.4 < F.S. < 1.3
Modifier	< 0.4

High field strength (for C it is 2.4) => covalent bonds, difficulty to form a glass

Intermediate field strength (1-2) => mixed bonds, can form glasses

Low field strength => ionic bonds, do not form glasses

Dietzeld and field strength criteria Mixing two network forming elements

On cooling a binary melt with cations of approximately the same field strength, phase separation or crystallization of the pure oxide phases is normally seen (e.g. $SiO_2-P_2O_5$, $SiO_2-B_2O_3$, $B_2O_3-P_2O_5$).

Field strength of two cations approximately equal => demixing occurs

To form a single stable crystalline compound normally requires $\Delta F_s > 0.3$

As ΔF_s increases, so does the number of possible stable compounds, and the tendency to form a glass. For a binary system, glass formation is likely for ΔF_s > 1.33

this theory can usefully categorize glass forming ability in conventional systems, but not universally

Dietzeld and field strength criteria Mixing two network forming elements

SiO₂, B_2O_3 , and P_2O_5 the best glass-formers (Zachariasen–Warren conditions for glass formation also met for any of their combinations)

But

 $SiO_2-B_2O_3$ melts solidify as glasses at any proportion (with some region of immiscibility)

 $SiO_2 - P_2O_5$ and $B_2O_3 - P_2O_5$ melts solidify to crystalline solids for most proportions, or upon rapid quenching, form phase-separated glasses

differences in field strength $\Delta F_s =>$ crystalline solidification of the B₂O₃-P₂O₅ and SiO₂-P₂O₅ systems

Differences in field strength ΔF of cations in binary glasses for the main glass-formers SiO ₂ , B ₂ O ₃ , and P ₂ O ₅ (W	. Vogel, Glass
Chemistry, Springer-Verlag, 1992).	

Oxide glass system	Differences in field strength	Solidification behavior of the melt
Si-B	0.06	Glass formation
B-P	0.47	Precipitation of crystalline: BPO ₄
P–Si	0.53	Precipitation of crystalline: $SiO_2 - P_2O_5$ and $3SiO_2 - P_2O_5$

Vogel "Glass chemistry" (1994)

Dietzeld and field strength criteria Mixing two network forming elements

 $SiO_2 - B_2O_3$

Si⁴⁺ (in SiO₄) $F_s = 1.57$ B³⁺ (in B₂O₃) $F_s = 1.63$

Small difference in field strength : tendency for the division of the O²⁻ ions between the two competing cations => formation of immiscible glasses

Differences in field strength ΔF of cations in binary glasses for the main glass-formers SiO₂, B₂O₃, and P₂O₅ (W. Vogel, Glass Chemistry, Springer-Verlag, 1992).

Oxide glass system	Differences in field strength	Solidification behavior of the melt
Si–B B–P	0.06 0.47	Glass formation Precipitation of crystalline: BPO ₄
P–Si	0.53	Precipitation of crystalline: $SiO_2 - P_2O_5$ and $3SiO_2 - P_2O_5$

Vogel "Glass chemistry" (1994)

 \Rightarrow Thibault Charpentier

 $SiO_2 - P_2O_5$ Si^{4+} (in SiO_4) $F_s = 1.57$ P^{5+} (in PO_4) $F_s = 2.1$

P higher field strength => favor the formation of PO_4 tetrahedra Si cannot compete with P to maintain SiO₄ tetrahedra => SiO₆ octahedra

P often promote phase separation due to its high field strength

Differences in field strength ΔF of cations in binary glasses for the main glass-formers SiO₂, B₂O₃, and P₂O₅ (W. Vogel, Glass Chemistry, Springer-Verlag, 1992).

Oxide glass system	Differences in field strength	Solidification behavior of the melt
Si-B	0.06	Glass formation
B-P	0.47	Precipitation of crystalline: BPO ₄
P–Si	0.53	Precipitation of crystalline: $SiO_2 - P_2O_5$ and $3SiO_2 - P_2O_5$

Zachariasen's classification of ions as network-formers, network-modifiers, or intermediates correlates well with Dietzel's field strength values

K10.13380.2770.13Network-modifiers $Z/a^2 \approx 0.1-0.4$ Na10.09860.2300.19Li10.07860.2100.23Ba20.14380.2860.24Pb20.13280.2740.27Sr20.10680.2480.33Mn20.09160.2230.40Fe20.08360.2150.43Mn20.08340.2030.49Mg20.07860.2100.45Intermediates $Z/a^2 \approx 0.5-1.0$ Zr40.08780.2280.77Be20.03440.1530.86Fe30.06760.1990.76Al0.1880.851.041.04B30.02040.1501.34B30.02040.1501.34Ce40.06460.1961.04B30.02040.1601.57P50.03440.1552.1P50.03440.1552.1P50.03440.1552.1	Element	Valence Z	Ionic radius	Coordination number	Ionic distance	Field strength Z/a ²	Function in glass structure
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	K	1	0.133	8	0.277	0.13	Network-modifiers $Z/a^2 \approx 0.1-0.4$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Na	1	0.098	6	0.230	0.19	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Li	1	0.078	6	0.210	0.23	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ba	2	0.143	8	0.286	0.24	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pb	2	0.132	8	0.274	0.27	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sr	2	0.127	8	0.269	0.28	
Fe20.08360.2150.43Mn20.08340.2030.49Mg20.07860.2100.45Intermediates $Z/a^2 \approx 0.5-1.0$ Zr40.08780.2280.77Be20.03440.1530.86Fe30.06760.1990.76Al30.05760.1880.84Al30.05760.1961.04B30.02040.1501.34Network-formers $Z/a^2 \approx 1.3-2.0$ Ge40.03940.1601.57P50.03440.1552.1	Ca	2	0.106	8	0.248	0.33	
Mn20.08340.2030.49Mg20.07860.2100.45Intermediates $Z/a^2 \approx 0.5-1.0$ Zr40.08780.2280.77Be20.03440.1530.86Fe30.06760.1990.76Al30.05760.1890.84Al30.05760.1991.04B30.02040.1501.34Network-formers $Z/a^2 \approx 1.3-2.0$ Ge40.03940.1661.45Si40.03940.1552.1	Mn	2	0.091	6	0.223	0.40	
Mg20.0786 40.2100.45 0.53Intermediates $Z/a^2 \approx 0.5-1.0$ Zr40.08780.2280.77Be20.03440.1530.86Fe30.06760.1990.76Al30.05760.1880.85Al30.05760.1991.04B30.02040.1501.34Network-formers $Z/a^2 \approx 1.3-2.0$ Ge40.03940.1601.57P50.03440.1552.1	Fe	2	0.083	6	0.215	0.43	
Zr40.1960.53Zr40.08780.2280.77Be20.03440.1530.86Fe30.06760.1990.76Al30.05760.1880.85Al30.05760.1961.04Ti40.06460.1961.04B30.02040.1501.34Network-formers $Z/a^2 \approx 1.3-2.0$ Ge40.04440.1661.45Si40.03940.1552.1	Mn	2	0.083	4	0.203	0.49	
Zr40.1960.53Zr40.08780.2280.77Be20.03440.1530.86Fe30.06760.1990.76Al30.05760.1880.85Al30.05760.1961.04Ti40.06460.1961.04B30.02040.1501.34Network-formers $Z/a^2 \approx 1.3-2.0$ Ge40.04440.1661.45Si40.03940.1552.1							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mg	2	0.078	6	0.210	0.45	Intermediates $Z/a^2 \approx 0.5-1.0$
Be20.03440.1530.86Fe30.06760.1990.76Al30.05760.1880.85Al30.05760.1890.84Ti40.06460.1961.04B30.02040.1501.34Network-formers $Z/a^2 \approx 1.3-2.0$ Ge40.03940.1601.57P50.03440.1552.1				4	0.196	0.53	
Fe30.06760.1990.76 Al 30.05760.1880.85 Al 30.05760.1890.84 A 0.1770.96Ti40.06460.1961.04B30.02040.1501.34Network-formers $Z/a^2 \approx 1.3-2.0$ Ge40.03940.1661.45Si40.03940.1552.1	Zr	4	0.087	8	0.228	0.77	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Be		0.034		0.153	0.86	
Al30.05760.1890.84 A 0.1770.96Ti40.06460.1961.04B30.02040.1501.34Network-formers $Z/a^2 \approx 1.3-2.0$ Ge40.03940.1661.45Si40.03940.1552.1	Fe	3	0.067	6	0.199	0.76	
Ti40.064 $\stackrel{4}{6}$ 0.177 0.1960.96 1.04B30.02040.1501.34 1.45Network-formers $Z/a^2 \approx 1.3-2.0$ Ge40.04440.1661.45Si40.03940.1601.57 				4	0.188	0.85	
Ti 4 0.064 6 0.196 1.04 B 3 0.020 4 0.150 1.34 Network-formers Z/a ² ≈ 1.3-2.0 Ge 4 0.044 4 0.166 1.45 Si 4 0.039 4 0.160 1.57 P 5 0.034 4 0.155 2.1	Al	3	0.057	6	0.189	0.84	
B 3 0.020 4 0.150 1.34 Network-formers Z/a ² ≈ 1.3-2.0 Ge 4 0.044 4 0.166 1.45 Si 4 0.039 4 0.160 1.57 P 5 0.034 4 0.155 2.1				4	0.177	0.96	
Ge40.04440.1661.45Si40.03940.1601.57P50.03440.1552.1	Ti	4	0.064	6	0.196	1.04	
Ge40.04440.1661.45Si40.03940.1601.57P50.03440.1552.1							
Si40.03940.1601.57P50.03440.1552.1	В	3	0.020	4	0.150	1.34	Network-formers $Z/a^2 \approx 1.3-2.0$
P 5 0.034 4 0.155 2.1	Ge	4	0.044	4	0.166	1.45	
	Si	4	0.039	4	0.160	1.57	
	Р	5	0.034	4	0.155	2.1	
B 3 U.U2U 3 1.03	В	3	0.020	3		1.63	

Classification of cations according to Dietzel's field strength (W. Vogel, Glass Chemistry, Springer-Verlag, 1992).

Structural approach to glass formation

Several models encompass most of the relevant aspects which are known to lead to glass formation:

- Based on coordination number
- Goldschmidt's radius ratio
- Zachariasen's random network theory
- Based on bond type
- Smekal's mixed bonding rule
- Stanworth's electronegativity rule
- Based on bond strength
- Sun's single bond strength criterion
- Based on field strength
- Dietzel's field strength
- Based on Mott's rule
- Phillips

Topological constraints hypothesis

Glass forming ability discussed by Phillips (1979) in term of a constraint model.

Most inorganic covalently bonded glasses have low values of atomic coordination number. An atom which has all covalent bonds satisfied, obeys the (8-N) rule (Mott's rule) i.e. Se has $N_c=2$, Ar has $N_c=3$, Si has $N_c=4$, etc

For a binary alloy $A_x B_{1-x}$, the average coordination (m):

 $m = x N_c(A) + (1-x) N_c(B)$

Ex : $<m>As_2Se_3 = 2.4$ $<m>SiO_2 = 2.67$

Topological constraints hypothesis

Phillips theory: the glass-forming tendency is maximized when the number of constraints is equal to the number of degrees of freedom, N_{d} . (usually $N_d = 3$, 3D) => overconstrained (rigid) materials (a-Si,...) \neq underconstrained (floppy) materials

Source of figure: M. F. Thorpe, M. V. Chubynsky in Properties and Applications of Amorphous Materials, Ed. M. F. Thorpe, L. Tichy, Kluwer Academic Press, Dordrecht, p. 61, 2001.

 \Rightarrow Matthieu Micoulaut

 $3s^2, 3p^4$

Electronic structure of a-Se Energy band gap 1.7eV

 $a-S 3s^23p^4$

a-Se $4s^24p^4$

a-Te $5s^25p^4$

Chains or non-connected rings

Modèle structural de a-Se

$$C_{2}^{0} \qquad (2) E p + \Delta \qquad C_{1}^{0} \qquad (1) E p + \Delta$$

$$0 \qquad (1) E p + \Delta \qquad C_{1}^{0} \qquad (4) 0 \qquad E = - E p$$

$$= D^{0} \qquad (1) E p + \Delta \qquad (4) 0 \qquad E = - E p$$

$$= D^{0} \qquad (1) - E p$$

Se

Se

Electronic configuration of a-Se and end-of-chain defect — Se — Se

$$C_{3}^{+}$$

=D+ 0 $AAA = (3) E p + \Delta$
E=-3 E p
(3) - E p

Rebuilding of end-of-chain defect

a-S 3s²3p⁴ a-Se 4s²4p⁴ a-Te 5s²5p⁴

System Ge-S or Ge-Se

GeS₄ units
 GeS₄ tetrahedra linking S chains

Ge All Ge are in 4-fold coordination (isostructural to a-Si)

Tetrahedra can shares corners and edges≠silicates

Structure of chalcogenide glasses

System As-S or As-Se

Figure 1.13. The structure of orpiment (As₂S₃) viewed in two projections. (the figures indicate the position of the atoms above the plane of the paper)

- \Rightarrow Annie Pradel
- \Rightarrow Bruno Bureau
- \Rightarrow Eugene Bychkov

Notion of network former applicable to all kind of glasses ?

Possible to define network former or modifier in

- metallic glasses ?
- organic glasses ?

Consider packing of dense spheres

Most compact configuration for spheres which are all identical in a 3D-space (cfc, hc) \Rightarrow compacity 0.74

Proposed by J. Kepler in 1611, this results was demonstrated only in 1998 by T. Hales

Compacity is the ratio between the volume of particules within the cell and the volume of the cell. It is the degree of filling of the space cfc, hc C=0.74 cc C=0.68

And for a disordered stacking ?

Colloidal Granular medium Sand pile or peas

Principle : hard sphere dense random packing

Packing ratio: 0.636

- \Rightarrow random packing of spheres
- \Rightarrow Importance of free volume
- \Rightarrow metallic glasses: minimization of free volume

 \Rightarrow dense random packing of spheres

1971)

Mixing various elements with different sizes

Metal (Fe,Ni,Al,Cr,Pd) Metalloids (P,Si,B,Ge) $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$

Principle of confusion

Tang et al., Nature 402, 160 (1999)

A more complicated chemical composition translate into a greater number of compounds that could nucleate and, thus, in mutual competition such that crystal nucleation and growth is frustrated and does not take place on sufficiently rapid cooling

From 'Silicate glasses and melts: properties and structure' Mysen & Richet (2005)

+ medium range order (2006)Stacking of blocks with 5-fold symmetry

Sheng et al., Nature 439, 419(2006)

icosaedron

Miracle, Nature Materials 2004 Yavari, Nature Materials 2005 Sheng et al, Nature 2006 Yavari, Nature 2006 \Rightarrow Lindsey Greer

Energetic Stability: Clusters

clusters lead to energetic stability

prevalence of efficiently-packed clusters (low free volume and energy) that do not have symmetry suitable for crystal formation explain the stability of supercooled liquids

icosahedrally-coordinated atomic clusters are the probable clusters for pure liquids

 \Rightarrow The Zachariasen's rule do not applied \Rightarrow Possible to talk of network former ?

Structures of polymers

chains packed in a regular way => crystal

Both amorphous and crystalline areas can exist in the same polymer

Figure 32 Crystalline and amorphous regions of a polymer.

Chain entanglement: Long polymer chains get entangled with each other

random coil modelModèle de pelote aléatoire

Structures des polymères

(a) Linear structure : van der Waals bonding between chains

(b) Branched structure : Chain packing efficiency is reduced compared to linear polymers - lower density

(c) Cross-linked structure : Chains are connected by covalent bonds. Often achieved by adding atoms or molecules that form covalent links between chains

(d) Polymerized structure : Three active covalent bonds - Highly cross-linked

3 main structural atomic models for non-crystalline solids

•Random Network

Continuous random network \rightarrow ioni-covalent glasses SiO₂ Modified random network \rightarrow ioni-covalent glasses Na₂O-SiO₂

• Random Close Packing
Empilement aléatoire compacte → metallic glasses

• Random Coil Model

Modèle de pelote aléatoire \rightarrow polymeric organic glasses

References

http://www.lehigh.edu/imi/teched/OPG/lecture2.html

https://www.lehigh.edu/imi/teched/GlassCSC/Lecture_2_Martin.pdf

https://www.lehigh.edu/imi/teched/AtModel/Lecture_2_Micoulaut_Atomistics_Glass _Course.pdf

http://web.mst.edu/~brow/pdf_structure1.pdf

www.eng.uokufa.edu.iq/staff/sawsandh/Polymers.ppt

www.phy.bme.hu/Kristalyos_es_amorf.../Introduction.ppt