

1/ SOLEIL et le rayonnement synchrotron

Multi China and

W he was

Publication of

2/Les lignes de lumière

3/ exemples : expériences sur DIFFABS, LUCIA, GALAXIES

Journées plénières USTV – GDR VERRE – Nice 18 novembre 2015 Dominique THIADDIÈRE

Très Grande Infrastructure de Recherche (TGIR)

Principales missions :

Promouvoir la recherche dans le domaine des sources de RS et des dispositifs expérimentaux associés.

- Production du rayonnement
- Accueil de la communauté scientifique
- Activité de recherche interne
- Développement d'une instrumentation de pointe

Société civile

Plus de 4000 utilisateurs (académiques, industriels)

6000 visiteurs (tous publics)

- 314 jours de faisceau délivré en 2016
- $\sim 500 \text{ publications / an}$
- ~ 70 projets industriels en 2014

Membres : le CNRS (72 %) et le CEA (28 %)

Budget annuel : ~ 58 M€

Personnel permanent : 358

Personnel non-permanent : Doctorants : 31 Post-doctorants : 25

+ chercheurs associés : 96

Production du rayonnement synchrotron

1- Linac
 2- Booster
 3- Anneau de stockage
 4- Lignes de lumière

 $E = 2.75 \text{ GeV}, I_e = 500 \text{ mA}$

Circonférence de l'anneau = 354 m

Sections droites : 24 / Aimants de courbure : 32

Aimants de courbure (22)

- Source « **blanche** », continue et accordable (de l'infrarouge aux rayons X)

La brillance

- Source brillante
- Haut flux

(permet de réduire les temps d'acquisition ou bien étudier une quantité de matière plus faible)

- Lumière polarisée (linéaire / circulaire) (symétrie des molécules, phénomènes magnétiques)
- Source pulsée (phénomènes dynamiques)
- Degré de cohérence
- Grande stabilité en position & en intensité (importance pour petits échantillons et fiabilité des résultats)

Instrumentation connexe

Taille de la sonde (en lien avec l'optique)

Équipements spécifiques (ex: diffractomètre 6/8 cercles)

Utilisation de détecteurs de plus en plus performants (détecteurs 2D, détecteurs multiéléments)

29 lignes de lumière

Chaque ligne de lumière est un « petit laboratoire »

- optimisée dans une gamme spectrale
- dédiée à une ou plusieurs techniques d'analyse
- couvrant le plus souvent plusieurs disciplines

Imagerie 2D/3D Haute résolution Contraste de phase Multi-éhelle Multi-technique

Les lignes de lumière en fonction du domaine spectrale

Les techniques de diffraction/diffusion des rayons X : information structurale

Diffraction	<u>CRISTAL, DIFFABS, PSICHÉ, MARS, PROXIMA 1, PROXIMA 2A, SEXTANTS,</u> <u>SIRIUS, SIXS</u>
Diffusion	GALAXIES, MARS, SEXTANTS, SIRIUS, SIXS, SWING
Réflectivité	<u>SEXTANTS, SIRIUS, SIXS, MÉTROLOGIE</u>

Les techniques de spectroscopie IR, UV et X : information chimique

Spectroscopie IR AILES, SMIS

Spectroscopie UV-VUV <u>DESIRS</u>, <u>DISCO</u>, <u>PLÉIADES</u>

Spectroscopie XCASSIOPÉE, DEIMOS, DIFFABS, GALAXIES, HERMES, LUCIA, MARS
NANOSCOPIUM, ODE, PLÉIADES, ROCK, SAMBA, SEXTANTS, TEMPO

Les techniques d'analyses électronique et magnétique

Etudes électroniques	ANTARES, CASSIOPÉE, DEIMOS, DESIRS, GALAXIES,
et magnétiques	<u>HERMES, ODE, PLÉIADES, SEXTANTS, SIRIUS, TEMPO</u>

Les techniques d'imagerie et de radiographie : morphologie

Imagerie

ANTARES, DISCO, DIFFABS, HERMES, LUCIA, NANOSCOPIUM, SEXTANTS, SMIS PSICHÉ, PUMA

Tomographie

Les lignes de lumière

Processus	Techniques	Informations
Absorption	Spectroscopie d'absorption X EXAFS (Extended X-ray Absorption Fine Structure) XANES (X-ray Absorption Near Edge Structure) en transmission, en fluorescence, en polarisation, en incidence rasante	Coordinence, géométrie de site, distorsion de site, valence, propriétés électroniques, distances interatomiques, nature , désordre.
	Spectroscopie de fluorescence XRF (X-Ray Fluorescence)	Nature, teneur, Localisation (cartographie)
Diffusion élastique	Diffraction des rayons X XRD (x-ray diffraction)	Détermination de structures Reconnaissance des phases cristallines Microstructure, déformations
	Diffusion des RX aux grands angles WAXS (Wide-Angle X-ray Scattering)	Distances interatomiques, nombre de voisins
	Réflectométrie X XRR (X-ray reflectivity)	Épaisseur, rugosité

+ Diffraction résonante :

 $f(q, E) = f_0(q) + f'(E) + if''(E)$

- soit diffraction X / diffusion X, avec effet anomal (AXRD ou AWAXS)

- soit spectroscopie en condition de diffraction (DAFS, DANES)

D.-R. Neuville¹, E. Strukelj¹, B. Cochain¹, P. Richet¹, M. Roskosz², M. Comte³, B. Guillot⁴, L. Hennet⁵, D. Thiaudière⁶

¹ Physique des minéraux et magmas, CNRS-IPGP, ² LSPES-Lille, ³ Corning SAS CETC, ⁴ LPTMC, ⁵ CEMHTI, ⁶ Synchrotron SOLEIL

Best knowledge of the liquid crystallization in natural and industrial process. Fundamental aspects for materials sciences and earth science

 $CaO-Al_2O_3-SiO_2$ composition including 7% of ZrO_2

(Nucleating agent)

Experimental set-up for in situ XAS / WAXS measurements at high temperature

Diffractometer

Detector arm including

•YAP detector for WAXS @ 17.5 keV

•Si-Csl detector for XAS @ Zr K-edge (transmission mode)

Heating system : Pt/Ir 10% wire (T max 1700°C)

•SDD detector for XAS @ Zr K-edge (fluorescence mode)

Heating from Room Temperature

Nucleation at 1173 K Crystallization at 1373 K

6 R()

Evolution of XAS signal as a function of the time for nucleation and crystallization stages

•Shift of the first peak - Modification of the short range order •Appearance of the Ca-O correlation (Increased order in the supercooled and glass states.

L. Hennet, S.Brassamin, J. Drewitt, D. Zanghi : CEMHTI – Orléans Thomas Farmer, Adrian Barnes : Bristol University C. Mocuta, S. Réguer, D. Thiaudière : Synchrotron SOLEIL

$(AI_2O_3)_{1-X}$ - $(Y_2O_3)_X$

- Well known compounds obtained from the melt : YAP (x=0.5), YAG (x=0.375)
 Detectors
- Polyamorphism observed at various compositions around x=0.2
- glass formers in a wide range of compositions

Interesting to study the liquid structure

Problems:

3 atoms (AI, Y, O) \rightarrow 6 atomic pairs \rightarrow Overlaps

- Difficult to separate AI-O and Y-O correlations
- Cation-cation contributions hidden by O-O pairs

Total Pair Distribution Function for various compositions @ HT (<2100°C)

2 options for the detection part

 $I(Q) = I_{coh}(Q) + I_{air}(Q) + I_{mult}(Q) + I_{compt}(Q) + \left[I_{fluo}(Q)\right]$

graphite analyzing crystal

SDD detector mounted on the 2θ arm.

Principle : XRD measurements à 2 energies: E₁ (16.500 keV) & E₂ (16.976 keV)

Laurianne Robinet¹, M. Spring², Sandrine Pagès-Camagna³, Delphine Vantelon⁴ & Nicolas Trcera⁴

¹ IPANEMA, ² National Gallery – London, ³ CRRMF - Paris, ⁴ Synchrotron SOLEIL

Normal light

Ultraviolet light

	Weight %	SiO ₂	Al ₂ O ₃	Na₂O	K ₂ O	CaO	MgO	FeO	CoO	As ₂ O ₃	NiO	PbO
	G1 well-preserved	64.4	1.8	1.2	16.0	7.0	0.8	2.0	2.1	4.2	0.1	0.4
SEM-EDX analysis	G3 altered	76.2	0.7	0.4	1.8	6.0	0.5	2.2	4.1	7.0	0.9	0.2

Co–O distance from EXAFS region

Sample	State	R (Å)	N (dN)
Veronese	Unaltered	1.95	4.4 (2)
L2925	Altered 1	2.03	5.5 (2)
	Altered 2	2.06	6.0 (3)
Murillo NG13S8	Unaltered	1.95	4.7 (2)
	Altered 1	1.97	5.5 (2)

Correlation Co²⁺ coordination – alkali leaching

Robinet L., Spring M., Pagès-Camagna S., Vantelon D., Trcera N., "Investigation of the discoloration of smalt pigment in historic paintings by micro X-ray absorption spectroscopy at the Co K-edge", **Analytical Chemistry** (2011)

G. Lelong¹, L. Cormier¹, G. Radkte¹, B. Baptiste¹, L. Hennet², G. Monaco³, J.-P. Rueff ⁴, J. Ablett ⁴, G. Rousse⁵

¹ IMPMC - Paris, ² CEMHTI - Orléans, ³ ESRF - Grenoble, ⁴ Synchrotron SOLEIL, ⁵ Collège de France - Paris

Diffusion inélastique Raman des rayons X (X-ray Raman Scattering, XRS)

Processus Inélastique

Un photon incident avec une énergie *Ei* est diffusé avec une énergie plus faible: $E_f = E_i - \Delta E$

Avec le transfert d'énergie, un électron de cœur est excité vers un niveau inoccupé.

 $Li_2O-B_2O_3$

B-K: 188 eV

O-K: 543 eV

Intérêts du système Li₂O-B₂O₃ (vitreux et cristallin) Li-K : 54.7 eV

Technologiques :

- Matériaux pour l'optique non linéaire (LiB₃O₅)
- Bonne conductivité. Utilisation potentielle comme électrolytes solides (Li₃BO₃)
- LiMBO₃ (M=Fe, Co, Mn) : Utilisation potentielle comme cathodes

Scientifiques :

- B₂O₃ : Formateur de verre complètement constitué d'unités triangulaires BO₃
- Borates : Excellents matériaux pour étudier l'ordre à courtes et moyennes distances (anneaux Boroxol, superstructures)

Dispositif expérimental pour des mesures à l'état liquide

(T ambiante)

Modification du seuil due à un changement du rapport BO₃ / BO₄

Détermination du rapport ^[3]B/^[4]B

Référence (100% ^[3]B) :

B₂O₃ : Formateur de verre constitué d'unités triangulaires BO₃

Proportion ^[3] $B = \frac{Aire(LB_2)}{Aire(B_2O_3)}$

Evolution avec la teneur en Li

- Cette étude
- ¹¹B NMR Zhong *et al.* JNCS **111**, 67-76 (1989)
- ¹¹B NMR Feller *et al.* JNCS **51**, 21-30 (1982)

G. Lelong et al. J. Inorg. Chem. 2014, 53(20), 10903 .