La physique du mouillage

Thierry Ondarçuhu

Institut de Mécanique des Fluides de Toulouse

Outline

Surface tension

Statics of wetting

- Contact angle
- ✓ Hysteresis
- Structured surfaces
- Nanoscale wetting
- ✓ Wetting of fibers

Wetting dynamics: the moving contact line issue

- Dynamical contact angle
- Spreading dynamics
- Simulations
- Intertial wetting
- Impact

Wetting in complex situations

- ✓ Volatile liquids
- ✓ Reactive liquids
- Surfactants

Wetting and adsorption

- Contamination by airborne molecules or particles
- Cleaning

Gouttes, bulles, perles et ondes Nouvelle ÉDITION AVEC CD-ROM

Belin

De Gennes, *Rev. Mod. Phys.* 1986 Bonn *et al., Rev. Mod. Phys.* 2009

Surface tension

Surface energy

$$\gamma = \frac{energy}{surface} \sim \frac{kT}{a^2}$$

$$\gamma \sim \frac{4.10^{-21}}{(2.10^{-10})^2} \sim 100 \ mJ/m^2$$

Surface area minimization

Ex: Rayleigh-Plateau instability

Interfacial tension

Force per unit length

 $\delta W = \gamma L dx = F. dx$

Ex: sand castle

Interfacial tension

Laplace pressure

 $\Delta P = \frac{2\gamma}{R}$

$$\gamma = \gamma \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

$$R > 0 \text{ or } < 0$$

🖌 Ex : loi de Jurin

$$\Delta P_{Laplace} + \rho g h = 0$$

$$h = \pm \frac{2\gamma}{\rho g R}$$

Capillary length

> Laplace pressure *vs.* hydrostatic pressure

Mesure tension

Pendant drop methodBalance surface tension force - weight

✓ Du Noüy tensiometer

 $F = 2 * 2\pi r \gamma$

Liquid	γ (mN/m)
Water	72,8
Glycerol	63
Ethylene glycol	48
Ethanol	22,4
Hexane	17,9
PDMS	20,4
Mercure	486

Wetting: thermodynamics

Spreading parameter

$$S = \gamma_{SG} - (\gamma_{SL} + \gamma)$$

• S > 0 Total wetting

• S < 0 Partial wetting

Partial wetting

Marchand et al., Am. J Phys. 2011

Contact angle measurements

Contact angle measurements

20 5 10

200 nm

100 200 300 40

X (nm)

a)

Calo et al., Molecules. 2021

92

Contact angle measurements

ESEM

Chatre et al., Langmuir 2023

> SEM with ionic liquids

Dupré de Baubigny et al., Langmuir. 2015

► TEM

Gogotsi et al., Appl. Phys. Lett. 2001

Naguib et al., Nano. Lett. 2004

Controlling contact angle

Liquid or vapor phase

Maximum achievable contact angle on flat surface

$$\boldsymbol{\theta} \approx 120^{\circ}$$

1H, 1H, 2H, 2H, perfuorodecyltrichlorosilane

~ Teflon[®]

Switchable surfaces

Photoswitching

> Others

Gras et al., ChemPhysChem 2007

Controlling contact angle

Contact angle hysteresis

Origin: pinning of the contact line on surface defects

 $\pi r \gamma (\cos \theta_{\rm r} - \cos \theta_{\rm a}) \ge \rho \Omega g \sin \alpha$

Contact angle hysteresis: individual defect

Balance of forces

Strong defect

Contact angle hysteresis: individual defect

Contact angle hysteresis: collective effects

Patterned substrates (> 10 μm)

Nanometric defects

Pb : reference surface without hysteresis

Cubaud, Fermigier JCIS 2004

Chemical heterogeneity: Cassie-Baxter model

 $dE = [\Phi_1(\gamma_{1L} - \gamma_{1G}) + \Phi_2(\gamma_{2L} - \gamma_{2G})] dx + \gamma \cos \theta dx$

$$\cos\theta^* = \Phi_1 \cos\theta_1 + (1 - \Phi_1) \cos\theta_2$$

Cassie and Baxter Trans. Farad. Soc. 1944

Rough substrates

Quéré, Ann. Rev. Mat. Res. 2009

Rough substrates: Wenzel state

Rough hydrophilic: superhydrophilicity

 $dE = (\gamma_{SL} - \gamma_{SG})(r - \Phi_S) + \gamma(1 - \Phi_S)$

$$\cos \theta_c = \frac{1 - \phi_S}{r - \phi_S}$$

Ichino et al., EPL 2007

$$\cos \theta^* = \phi_S \cos \theta_e + (1 - \phi_S)$$
$$\cos \theta^* = 1 - \phi_S (1 - \cos \theta_e)$$

Rough hydrophobic: superhydrophobicity

Superhydrophobicity in nature

Artificial superhydro-phobic (philic) surfaces

Checco et al., Adv. Mat. 2014

Superhydrophilicity - superhydrophobicity

Ondarçuhu et al., Sci. Rep. 2016

Metastability of Cassie state

Mc Hale *et al.,* Langmuir 2004

At microscopic scale

Schellenberger et al., Sci. Rep. 2016

 $\theta_{av} \sim 180^{\circ}$

Applications

Nishimoto et al., RSCAdv 2015

✓ Robustness

✓ Contamination

✓ Hot water

Anti-fogging

t = 22.8 s

t = 0 s

t = 26.6 s

Omniphobic surfaces

Contact angle of oil on hydrophobic surface < 90°</p>

Hensel et al., Chem. Soc. Rev. 2016

Tuteja et al., PNAS 2008

Long range forces (vdW)

✓ Which interaction determines contact angle?

✓ How does it affect spreading regimes?

✓ How does it affect thin film stability?

✓ Shape of nanodroplets?

Wetting of graphene

Wetting of graphene

Wetting of graphene

Rms roughness 0,4 nm
Wetting of graphene

Ondarçuhu et al. Sci Rep 2016

No wetting transparency

Wetting of graphene

Nano-wetting: effect of long range forces

Nano-wetting: effect of long range forces

Nano-wetting: effect of long range forces

Structural forces

Wetting criterion depends on : - sign of spreading coefficient
- sign of Hamaker constant

Effect on wetting films

Dewetting

$\Phi^{\prime\prime}(h) < 0$ unstable

Seemann et al., Phys. Rev. Lett. 2001

Influence on drops

$$\mathcal{H}[f] = \int dx \int dy \left[\frac{1}{2} \sigma_{lv} (\nabla f)^2 + \omega(f) \right]$$

Getta and Dietrich. Phys. Rev. E 1998

Influence on drops

nm

Condensation on hydrophilic nanostripes

Line tension

Phenomenological description

Theoretical description

Multiples contributions

$$\tau_{lvs} = \sqrt{2 \sigma_{lv}} \int_{\ell}^{\infty} \left[\sqrt{\omega(\ell) - \omega(\tilde{\ell})} - \sqrt{-\omega(\tilde{\ell})} \right] d\ell, \quad + \text{Tolman length} + \text{line rigidity...}$$

Schimmele et al., J. Chem. Phys. 2007

Line tension: experimental determination

$$au = -500 \ \mathrm{pN}$$

$$au = -300 \text{ pN}$$

Pompe, Herminghaus Phys. Rev.Lett. 2000

Nucleation of vapor bubble

 $\tau = -23$ to -35 pN

Critical nucleus energy :

$$\Delta \Omega_{\rm c} \simeq P_{\rm L} K_1(\theta) R_{\rm p}^3 + \gamma_{\rm lv} K_2(\theta) R_{\rm p}^2 + \tau K_3(\theta) R_{\rm p}$$
$$P_{\rm ext}^o = \frac{k_B T}{V_{\rm c}} \ln \frac{L \nu t_{\rm o}}{b} - \frac{K_2(\theta)}{K_1(\theta)} \frac{\gamma_{lv}}{R_{\rm p}} - \frac{\tau}{R_{\rm p}^2} \frac{K_3(\theta)}{K_1(\theta)}.$$

 $P_{ext} = -200 \text{ bars} \rightarrow 80 \text{ bars}$

Huge impact on bubble nucleation (energy barrier)

Rayleigh-Plateau instability

Clampshell/barrel shapes

Wetting of fibers

Barrell-clamshell transition

> Tapered fibers

Lorenceau et al. JFM 2004

Coalescence filters, water collection, fog harvesting...

Wetting dynamics

Duez et al. Nature Phys. 2007

Dynamic contact angle

Dissipation at the contact lineDynamic instabilities

Spreading regimes

Droplet spreadingFilm dewetting

Snoeijer et al. ARFM 2013

Dynamic contact angle

Wetting dynamics

Three regions:

macroscopic,

mesoscopic,

Molecular

diverges at CL

Wetting dynamics: macroscopic scale

Capillary number

$$Ca = \frac{\eta U}{\gamma}$$

Wetting dynamics: mesoscopic scale

Viscous stress vs. Capillary pressure

$$\frac{\partial P_{vis}}{\partial x} = \gamma (h_{xx})_x \qquad \qquad h_{xxx} = -\frac{\pm 3Ca}{h^2}$$

Voinov solution:

$$h_x \approx \theta(x) \cong \left[9Ca. ln\left(\frac{x}{l}\right)\right]^{1/3}$$

Voinov Fluid Dyn. (1976)

Matching : **Cox-Voinov equation**:

$$\theta_{ap}^{3} = \theta_{e}^{3} \pm 9Ca.\ln\left(\frac{L}{l}\right)$$

Cox J. Fluid. Mech (1986)

Regularization of contact line singularity

> Thermally activated process

Mixed models

✓ spatial scales

MKT $\rightarrow \theta_{\mu}(U)$ introduced in Cox-Voinov

✓ Velocity

Small velocities: MKT Large velocities: Cox-Voinov

Wetting dynamics on heterogeneous surfaces

Use of Cox-Voinov with static advancing or receding contact angles

MKT with defects

Spreading dynamics: Tanner's law

Precursor film

Huang et al., Phys. Rev. Lett. 2011

Spreading dynamics: nanodispensing

L. Fabié, T.O. Soft Matt. 2012

For ϑ_m = 0, analytical solution : $R-R_0 = At^{1/4}$

For $\vartheta_m \neq 0$, numerical solution

The Landau-Levich film (mouillage total)

 $h_0 \approx 0.94 a C a^{2/3}$

Maleki et al., JCIS 2011

Dynamical instability

Partial wetting

Snoeijer et al., PRL 2006

Le Grand et al., JFM (2005)

Snoeijer et al., Phys. Fluids 2007

Short time dynamics: inertial spreading

Winkels et al., Phys. Rev. E (2012)

Bird, et al. Phys. Rev. Lett (2008)

Inertia capillarity

Simulations

Le Grand *et al.*, *JFM* (2005)

Urbano et al., IJHMT (2018)

Impact

Marangoni effect

- Wetting with volatile liquids
- Reactive wetting
- Wetting with surfactants solutions

Marangoni effect

Ex : camphor boat

Solutal Marangoni effect $\gamma(C)$: surfactants $\gamma(C) \downarrow$, binary solutions

Thermal Marangoni effect $\gamma(T) \downarrow$

Arcamone, J.Phys. Chem. B 2007

\succ Evaporation of femtoliter (10⁻¹⁵*l*) droplets

Deposition pattern: the coffee stain

Deegan et al., Nature 1994

Wang et al., Phys. Rep. 2022

Water/alcohol mixture

Fanton et al., Langmuir 1998

Wetting with complex liquids: surfactants

> A particular case: superspreading on hydrophobic surfaces

Nikolov et al., Current Opinion Coll Interf Sci. 2020 EPJST 2011

1. Initial spreading

$$\begin{cases} V_A(\theta^*) = \frac{\gamma}{9\eta l} \left(\theta_A^3 - \theta^{*3}\right) \\ V_P(\theta^*) = \frac{\gamma}{9\eta l} \left(\theta^{*3} - \theta_P^3\right) \end{cases} \qquad V = \frac{\gamma}{18\eta l} \left(\theta_A^3 - \theta_P^3\right) \end{cases}$$

 $\gamma \cos \theta_A = \gamma \cos \theta_P - \gamma_1 \Phi_S$ $\Phi_S = 1 - \exp\left(-\frac{t}{\tau}\right) = 1 - \exp\left(-\frac{L}{V\tau}\right)$ V(C) and V(L)

Perfluorosilane 0,02 M sur **lame de verre brute**

Beaune et al., PNAS. 2018

sur lame de verre traitée corona (mouillage total)

Perfluorosilane 0,05 M sur lame de verre brute

Simulations JADIM

Thiel et al., PRL 2004

- > Water is totally wetting <u>clean</u> glass surface
 - \checkmark Cleaning can be achieved by UV/Ozone cleaning, O₂ plasma, piranha solution...
- > Left in air, glass becomes hydrophobic due to airborne contaminant adsorption
 - ✓ Short hydrocarbons (butane, propane) are the main source of contamination

Millet et al. J. Geophys. Reseach Atm. 2005

✓ Water contact angle : 30-40 °

Contamination by particles

Chemical contamination by airborne molecules

Liu et al. Nature Mat 2013

$$\epsilon = \epsilon_{max} \left(1 - e^{-t/\tau} \right)$$

Adsorption

Franiatte *et al. PRL* 2021 *Langmuir* 2022

- Force curve until $h = 2.5 \mu m$
- 1000 cycles between $h = 1 \mu m$ and 2 μm
- Force curve until h = 2.5 μm

→ Desorption at the contact line