La spectroscopie d'absorption de rayons X dans l'analyse de verres dopés aux terres rares

F. d'Acapito CNR-IOM-OGG dacapito@esrf.fr

Layout

- Introduction to XAS
- Description of GILDA
- Experimental examples

Introduction to the XAS technique

X-ray Absorption Spectroscopy-XAS

-The information is retrieved from the oscillations above the absorption edge

- -Local structural parameters
 - N (number of neighbors),
 - R (distance),
 - σ^2 Debye-Waller factor (disorder)
- No need for long range order
- Typical accuracy 1% R, 10% N, 20% σ²

XAS spectrum regions

2 regions can be defined in the absorption spectrum

•XANES

- Up to 50 eV
- Long photoelectron wavelength
- Electronic structure
- Local geometry, symmetry
- Complex scattering processes

• EXAFS

- Short photoelectron wavelength
- Quantitative
- Dominated by single scattering

EXAFS data analysis

Some fundamental data can be extracted from the near edge region

I: Valence state The position of the edge (1st inflection point) depends on the charge on the ion. Qualitative XANES data analysis The valence state of a chemical specie can be derived from the position of

the first inflection point of $\mu(E)$.

Apparatus for measuring XAS

Measuring µ: direct method

 $I1 = I0 * exp(-\mu x)$

 $\mu = -\ln (I1/I0)$

Indirect methods

The GILDA Beamline

Optic Hutch •beam sizing mono-chromatization • focalization

Control room

Remote
 instrumentation control

Data analysis

3 Experimental cabins

- XAS Hutch (Instrumentation for XAS experiments)
- Diffraction Hutch (Instrumentation for XRD experiments)
 - "Open Hutch" (Open to user's experimental apparata)

Some figures

- Energy range: 5-90 keV
- Crystals Si(111), (311), (511), (755)
- Beam size 2*1 mm² >> 0.2*0.2 mm²
- Beam intensity 10¹¹-10⁹ ph/s
- HP-Ge detectors for X-ray

fluorescence

H ¹	¹ Periodic Table of the Elements									© www.elementsdatabase.com			2 He				
3 Li	Be	Edges:							B 5	C	N ⁷	08	۶ F	10 Ne			
11 Na	12 Mg		L —						13 Al	14 Si	15 P	16 <mark>S</mark>	17 Cl	18 Ar			
19 K	Ca ²⁰	21 SC	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	Sn Sn	Sb	Te Te	53	Xe
Cs	Ba	La	Hf	Ta	Ŵ	Re	Os	lr '	Pť	Au	Hg	TI	Pb	Bi	P0	At	Rn
87 Fr	Ra	89 Ac	Ac Unq Unp Unh Uns Uno Une Unn														
			Ce	59 Pr	oo Nd	Pm	Sm	e Eu	Gd	Tb	Dv	67 Ho	Er	Tm	70 Yb	- 71 Lu	
			90 Th	9i Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Experimental examples

How the local information from XAS helps in explaining the luminescence properties

Local structure of 1.54- μ m-luminescence Er³⁺ implanted in Si

D. L. Adler, D. C. Jacobson, D. J. Eaglesham, M. A. Marcus, J. L. Benton, J. M. Poate, and P. H. Citrin *AT&T Bell Laboratories, Murray Hill, New Jersey 07974* 2181 Appl. Phys. Lett. **61** (18), 2 November 1992

1st investigation on link between structure and luminescence

10¹⁷ Er/cm³ -implanted Si: FZ vs CZ substrates.

CZ-Si ~100* more luminescent than FZ-Si CZ-Si contains 10¹⁸ O/cm³

Evolution of the local environment around Er upon thermal annealing in Er and O co-implanted Si

A. Terrasi,^{a)} G. Franzò, and S. Coffa

Consiglio Nazionale delle Ricerche, Istituto Nazionale Metodologie e Tecnologie per la Microelettronica, I-95121 Catania, Italy

F. Priolo Istituto Nazionale Fisica delle Materia and Dipartimento di Fisica dell'Università, I-95129 Catania, Italy

F. D'Acapito^{b)} Consiglio Nazionale delle Ricerche, I-00185 Rome, Italy

S. Mobilio

Istituto Nazionale di Fisica Nucleare and Dipartimento di Fisica, Università di Roma III, I-00146 Rome, Italy

(Received 22 November 1996; accepted for publication 30 January 1997)

1712 Appl. Phys. Lett. **70** (13), 31 March 1997 0003-6951/97/70(13)/1712/3/\$10.00 © 1997 American Institute of Physics

Er + O implanted FZ Si (resp 10¹⁹ and 10²⁰ /cm³)

Several Annealing processes to promote re-crystallization and Er-O reaction

Comparison structure-luminescence at each stage

Results A: Er-Si coordination B: Er-Si and Er-O C only Er-O D only Er-O more ordered

Results A: barely visible PL B: presence of PL C: more intense PL D: less intense PL respect to C

Environment of Erbium in *a*-Si:H and *a*-SiO_{*x*}:H

C. Piamonteze, A. C. Iñiguez, and L. R. Tessler

Instituto de Física "Gleb Wataghin," UNICAMP, CP 6165, 13083-970, Campinas, São Paulo, Brazil

M.C. Martins Alves and H. Tolentino

Laboratório Nacional de Luz Síncrotron, CP 6192, 13083-970, Campinas, São Paulo, Brazil (Received 17 June 1998)

Er:aSi prepared by RF sputtering Residual O or on purpose O doping at low level. Creation of ErO_s complexes with a high luminescence efficiency

EXAFS spectra

N to R comparison: a lower number of neighbors corresponds to a shorter distance

The non-centrosymmetric environment favours the intra-f emission at 1.54 μm

Er site in Er-implanted Si nanoclusters embedded in SiO₂

C. Maurizio,^{1,*} F. Iacona,² F. D'Acapito,¹ G. Franzò,³ and F. Priolo³

¹INFM-CNR, OGG-European Synchrotron Radiation Facility, GILDA-CRG, Boîte Postal 220, F-38043 Grenoble, France ²CNR-IMM, Sezione di Catania, stradale Primosole 50, I-95121 Catania, Italy

³MATIS CNR-INFM and Dipartimento di Fisica e Astronomia, Università di Catania, via Santa Sofia 64, I-95123 Catania, Italy (Received 12 July 2006; revised manuscript received 11 September 2006; published 22 November 2006)

Er-implanted sub-stoichiometric Silica. Formation of Si nanoclusters (nc)

T1-T3 different Si-nc size C1-C2 like T3 different Er content.

sample	Preimplantation annealing temperature (°C)	Er concentration (cm ⁻³)
T1		5.3×10^{19}
<i>T</i> 2	800	5.3×10^{19}
<i>T</i> 3	1250	5.3×10^{19}
C1	1250	4.5×10^{19}
C2	1250	$1.6 imes 10^{20}$
<i>C</i> 3	1250	1.0×10^{-21}

Neighbors vs bond length

Experimental data

Experimental data vs prediction of Bond Valence Method

PL properties

Life time

Low-O-coordinated Er plus small NC enhance the PL response

JOURNAL OF APPLIED PHYSICS 102, 103516 (2007)

Effect of the Er-Si interatomic distance on the Er³⁺ luminescence in silicon-rich silicon oxide thin films

P. Noé,^{a)} B. Salem,^{b)} E. Delamadeleine, D. Jalabert, and V. Calvo Laboratoire Silicium Nanoélectronique Photonique et Structure, DRFMC/SP2M, Commissariat à l'Energie Atomique, 17 rue des Martyrs, F-38054 Grenoble Cedex, France

C. Maurizio and F. D'Acapito CNR-INFM-OGG c/o ESRF, GILDA-CRG, 6, Rue Jules Horowitz, F-38043 Grenoble, France

Er:SiO layers obtained by coevaporation Different atmosphere for the process: vacuum (A), O2 (B), NH3 (C, D, E).

EXAFS experimental data + modelization

Sample	Ν	$R_{\text{Er-O}}$ (Å)	$R_{\rm Er-Si}$ (Å)
А	4.6(2)	2.18(1)	3.57(3)
В	5.3(3)	2.21(1)	3.57(3)
С	5.3(3)	2.15(1)	3.46(3)
D	3.4(1)	2.14(2)	3.44(4)
Е	3.0(2)	2.07(2)	3.48(4)

Quantitative results

Effect of the local order on the PL intensity Again, the lowest coordinated Er has shorter Er-O and Er-Si bonds and presents the more intense PL

X-ray absorption fine structure determination of the local environment of Er³⁺ in glass

Appl. Phys. Lett. 70 (5), 3 February 1997

P. M. Peters^{a)} and S. N. Houde-Walter The Institute of Optics, University of Rochester, Rochester, New York 14627

Looking for the origin of concentration quenching

Various glasses: Aluminosilicate, (AS) Fluorosilicate (FS), Phosphate(P)

Er concentration between 0.08mole% and 3 mole%

FT of the highest Er glasses: AS (line), FS (long dashes), P (short dashes)

The second shell can be explained with Er-(SI, AI, O, P...) No evidence of Er-Er coordination

Luminescent properties of local atomic order of Er³⁺ and Yb³⁺ ions in aluminophosphate glasses

F. d'Acapito^{a)}

INFM-OGG c/o ESRF-GILDA CRG BP220, F-38043 Grenoble, France

S. Mobilio Università Roma Tre' Via della Vasca Navale 84, I-00146 Roma, Italy

P. Bruno, D. Barbier, and J. Philipsen Teemphotonics 13, Chemin du Vieux Chêne, F-38240 Meylan, France

Looking for the origin of concentration quenching

Er Phosphate glasses obtained by melt

Is concentration quenching due to a direct Er-Er bond ?

PL lifetime as a function of the Er concentration

Fourier Transforms of the EXAFS data. A second shell is clearly visible but it is present on all the samples

Data fitting with the proposed structural model

The second shell is due to Er-P coordination bridged by an O. Er-O-P angle well defined

PHYSICAL REVIEW B 69, 153310 (2004)

Structure of Er-O complexes in crystalline Si

F. d'Acapito* INFM-OGG, c/o GILDA CRG-ESRF, Boîte Postale 220, F-38043 Grenoble, France

S. Mobilio[†] Dipartimento di Fisica, Universitá Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy

> S. Scalese CNR-IMM, Stradale Primosole 50, I-95121 Catania, Italy

A. Terrasi, G. Franzó, and F. Priolo INFM and Dipartimento di Fisica, Universitá di Catania, Corso Italia 57, I-95129 Catania, Italy

Sample	$N_{Er-O} \pm 0.6$	$\begin{array}{c} R_{Er-O} \\ \pm 0.02 \text{ Å} \end{array}$	$\Theta_{Er-O-Si}$ $\pm 4 \deg$	$\begin{array}{c} R_{Er-Si} \\ \pm 0.03 \text{ Å} \end{array}$
33	5.7	2.22	134	3.55
33C	5.6	2.22	137	3.59
33D	5.7	2.23	135	3.62
33E	5.5	2.23	137	3.60
49	5.0	2.23	135	3.58
49C	5.8	2.22	136	3.58
49D	5.8	2.23	137	3.59
49E	4.8	2.24	136	3.59
145AD	5.5	2.23	138	3.62
92AB	5.9	2.25	136	3.63

ELSEVIER

Journal of Non-Crystalline Solids 293-295 (2001) 118-124

www.elsevier.com/locate/jnoncrysol

Local order around Er³⁺ ions in SiO₂–TiO₂–Al₂O₃ glassy films studied by EXAFS

F. d'Acapito^{a,*}, S. Mobilio^b, P. Gastaldo^c, D. Barbier^d, Luís F. Santos^e, Orlando Martins^e, Rui M. Almeida^e_____

Sample	$N_{\text{Er-O}}$	$R_{\rm Er-O} \pm 6$	$\Theta_{\rm Er-O-SNN}$	$R_{\text{Er-SNN}} \pm 1$
	± 0.6	$\times 10^{-4}$	± 3	×10 ⁻³
		(nm)	(deg)	(nm)
0A0.2	6.8	0.2269	140	0.359
0A0.5	6.7	0.2271	141	0.363
9A0.2	6.4	0.2245	135	0.361
9A0.5	6.6	0.2265	135	0.365
9A1.0	6.2	0.2257	136	0.364
9A1.75	6.1	0.2256	138	0.362
0A0.25	6.7	0.2275	142	0.360
2A0.25	6.7	0.2277	140	0.361
5A0.25	6.6	0.2266	138	0.362
7A0.25	6.7	0.2265	137	0.365
9A0.25	6.5	0.2260	137	0.363
11A0.25	6.6	0.2258	136	0.365
17A0.25	6.6	0.2251	133	0.365

Er-O-NN angle well defined, about $138 \pm 4 \text{ deg}$

Local environment of rare-earth dopants in silica-titania-alumina glasses: An extended x-ray absorption fine structure study at the *K* edges of Er and Yb

F. d'Acapito^{a)}

Istituto Nazionale per la Fisica della Materia-OGG, 6 Rue Jules Horowitz, F-38043 Grenoble, France

S. Mobilio

Università "Roma Tre," Via della Vasca Navale, I-00184 Roma, Italy

L. Santos and Rui M. Almeida

Departamento de Engenharia de Materiais/INESC, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Proposed model for Er clustering: two ions bound to the same SiO4 tetrahedron

F. d'Acapito* C. Maurizio CNR-INFM-OGG, c/o ESRF 6, Rue Jules Horowitz, F-38043 Grenoble, France

M.C. Paul Fibre Optics Laboratory, CGCRI 196, Raja S.C. Mullick Road, Jadavpur, Calcutta, India

Role of CaO addition in the local order around Erbium in SiO₂-GeO₂-P₂O₅ fiber preforms

Materials Science and Engineering B 146 (2008) 167-170

Th. S. Lee W. Blanc B. Dussardier LPMC, Universite de Nice Sophia-Antipolis, CNRS UMR6622, 28 Avenue Joseph Vallot 061008 Nice, France

Investigation on fibre preforms (diam. ~500 μm) Glass: SiO2–GeO2–P2O5–Er2O3 with (A) and without (B) CaO

TEM of an A sample

The addition of Ca promotes the formation of nanoparticles
NP rich in Ca, P, Er
NP amorphous

PL and local structure

PL of A and B samples: the former is broader and less structured

EXAFS

A: glassy like spectrum (only a single frequency) B: modulated spectrum identical to ErPO4.

Conclusion Er has a strong affinity with P to form ErPO4 and the addition of Ca helps in dispersing Er

Contents lists available at ScienceDirect

Journal of Non-Crystalline Solids

journal homepage: www.elsevier.com/locate/jnoncrysol

EXAFS study of the Er^{3+} ion coordination in $SiO_2-TiO_2-HfO_2$ sol-gel films

Francesco d'Acapito^{a,*}, Ana C. Marques^b, Luís F. Santos^b, Rui M. Almeida^b

^a CNR-INFM-OGG, c/o ESRF GILDA CRG BP220, 6 Rue Jules Horowitz, F-38043 Grenoble, France
 ^b Departamento de Engenharia de Materiais/ICEMS, Instituto Superior Técnico/TULisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Silica-Titania-Hafnia layers produced by sol-gel Several annealing treatments

Acronym	Composition (molar ratio)	Densification heat-treatment	Post-implantation heat-treatment
STa STHa STHb SH600a SH600b SH900a	75 SiO ₂ -25 TiO ₂ 75 SiO ₂ -10 TiO ₂ -15 HfO ₂ 75 SiO ₂ -10 TiO ₂ -15 HfO ₂ 75 SiO ₂ -25 HfO ₂ 75 SiO ₂ -25 HfO ₂ 75 SiO ₂ -25 HfO ₂	5 min @ 600 °C 5 min @ 900 °C	10 min @ 600 ℃ 10 min @ 600 ℃ 5 min @ 900 ℃ 10 min @ 600 ℃ 5 min @ 900 ℃ 10 min @ 600 ℃
SH900b	75 SiO ₂ -25 HfO ₂	5 min @ 900 °C	5 min @ 900 ℃

XRD from samples

No evidence of crystallization PL remains broad Evidence of Er-Hf coordination upon annealing

Contents lists available at SciVerse ScienceDirect

Optical Materials

journal homepage: www.elsevier.com/locate/optmat

Incorporation of Yb³⁺ ions in multicomponent phase-separated fibre glass preforms

C.I. Oppo^a, R. Corpino^a, P.C. Ricci^a, M.C. Paul^b, S. Das^b, M. Pal^b, S.K. Bhadra^b, S. Yoo^c, M.P. Kalita^c, A.J. Boyland^c, J.K. Sahu^c, P. Ghigna^d, F. d'Acapito^{e,*}

Phase separated fibers: a way to insert Yb in crystalline environment Yb-doped Yttria-Alumina-Silica with P2O5. Target: obtain Yb-doped Y2O3.

Fig. 1. TEM pictures two annealed preform samples (A) NYb5-1000 annealed at 1000 °C and (B) NYb5-1300 annealed at 1300 °C.

Structure & PL

Conclusion

XAS is a tool for accessing the local structure of dopants in glassy matrices.REs in glasses: clear link between structure and optical properties.