

Ronan LEBULLENGER UMR 6226 - ISCR - Eq. Verres et Céramiques Univ Rennes 1 ronan.lebullenger@univ-rennes1.fr

https://iscr.univ-rennes1.fr/glasses-and-ceramics-vc 2022 Année du Verre - https://www.anneeduverre2022.fr/

Le recyclage du verre

Bilan de l'atelier sur le recyclage du verre

21 sept 2021 à Nancy

Xavier Capilla

Responsable environnement Institut du Verre Xavier.capilla@institutduverre.fr

114, rue la Boétie - 75008 Paris Tél: +33 (0) 1 42 65 60 02 www.institutduverre.fr

12 présentations

73 inscrits - Lieu Univ Lorraine -

Ronan Lebullenger

ISCR - UMR CNRS 6226 Équipe Verres et Céramiques Université de Rennes 1

> François MEAR **UCCS**

> > Université de Lille 1

USTV Union pour la Science et la Technologie Verrières

Accueil Adhérer à l'USTV

💢 Nancy 2021 - Le recyclage du verre – Brave

L'USTV

Distinctions

Journées USTV

Ateliers / Ecoles

Conférences

Webinaires

Réseau Verrier Français

Formation

L'art verrier

Nancy 2021 - Le recyclage du verre

Ecole thématique CNRS/USTV 2021 - La diffusion dans les verres

PROGRAMME ATELIER USTV RECYCLAGE DU VERRE

Télécharger

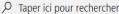
Verre et recyclage

Des filières engagées pour une économie circulaire vertueuse

VERRE ET RECYCLAGE - Jacques **Bordat**

Télécharger

A la une


- Colloque GRAND PUBLIC "VITRAUX à la croisée des disciplines"
- Offre de Post-Doc CEA Marcoule
- Poste Maître de Conférences CNU 28 - Sorbonne Université
- · Offre de thèse CEA
- Offre de thèse UCCS-RM2I
- Colloque "Verres émaillés et dorés de la Renaissance. Nouvelles perspectives"
- Conférence "Une Terre désordonnée ?" à l'IPGP

https://files.elfsight.com/storage/ceb932e0-9c86-4cde-996d-7087fa82601e/ffaad107-99c2-4521-ac5f-e6389fb3734d.pdf

ACTUS

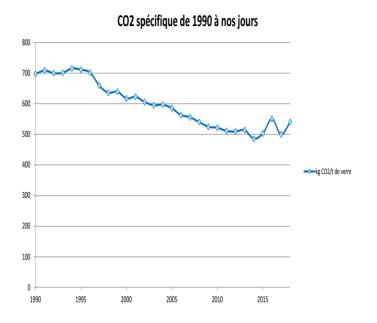
AVRIL

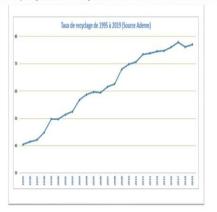
LA RPE DANS LES

Sommaire

- 1. Recycler pour décarboner
- 2. Verre d'emballage
- 3. Verre plat
- 4. Laine de verre
- 5. D3E
- 6. Autres usage du calcin

Décarboner notre industrie : un impératif à court terme


- √ 2050 : objectif Zéro Emission Net
 - ✓ Travaux du GIEC et des COP
 - ✓ Attentes sociétales et de nos clients
 - ✓ Cadre réglementaire
- ✓ 20% des émissions de GES (gaz à effet de serre) proviennent des matières premières verrières
- ✓ Le recyclage est un levier majeur de décarbonation
 - ✓ Baisse des émissions liées aux matières premières
 - ✓ Moindre besoin en énergie



Baisse significative des émissions spécifiques depuis 1990 : -22 %

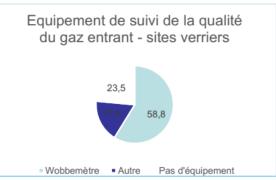
Baisses des émissions spécifiques : actions menées

✓ Hausse du taux de recyclage donc d'usage de calcin - hausse de 13% du volume de calcin utilisé en 18 ans.

- ✓ Amélioration de l'efficacité énergétique : baisse régulière de la consommation spécifique -6% en 18 ans
- ✓ Passage du fuel au gaz : passage d'un mix énergie comportant 35% de fuel à 12% entre 2000 et 2018

Furnace for the Future : Une technologie unique

- Réduira de 60% les émissions de CO₂ du four (en alimentant à 80% par de l'électricité renouvelable et 20% par du gaz naturel).
- Première mondiale, un **four électrique hybride de grande capacité** utilisant des niveaux élevés de verre recyclé (construction envisagée en 2022)
- Produira commercialement des emballages en verre dès 2023



Evolution du mix énergétique: recours à l'hydrogène

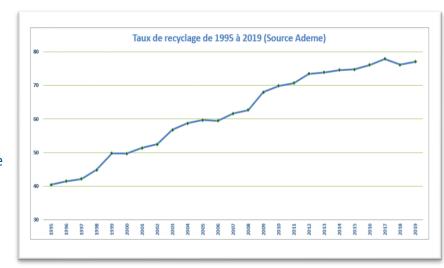
- ✓ Le recours à l'hydrogène pour les fours suppose la mise au point de nouveaux équipements. Il est néanmoins possible d'utiliser de l'hydrogène pour les activités de rebrulage
- ✓ Ce changement de combustible réduit les émissions sous réserve que l'hydrogène soit « vert »
- ✓ L'hydrogène peut en partie être injecté dans le réseau de gaz naturel => travaux en cours avec GRDF sur ce sujet – point d'attention sur les dispositifs de surveillance de la qualité du gaz sur nos sites
- ✓ Projection: de l'ordre de 2% d'hydrogène en 2050

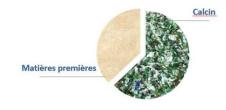
Economie circulaire : l'ère des REP (Responsabilité Elargie du Producteur)

- ✓ Cadre réglementaire en pleine évolution
 - ✓ Loi AGEC (Anti-Gaspillage pour une Economie Circulaire) (Fév 20)
 - ✓ Loi Climat et Résilience (Aout 21)
 - √ Révision cadre européen
- ✓ Après l'emballage et les D3E, de nombreuses REP sont en cours de création dont celle sur les produits et matériaux de construction et du bâtiment : 25 REP à termes!

Sommaire

- 1. Recycler pour décarboner
- 2. Verre d'emballage
- 3. Verre plat
- 4. Laine de verre
- 5. D3E
- 6. Autres usage du calcin



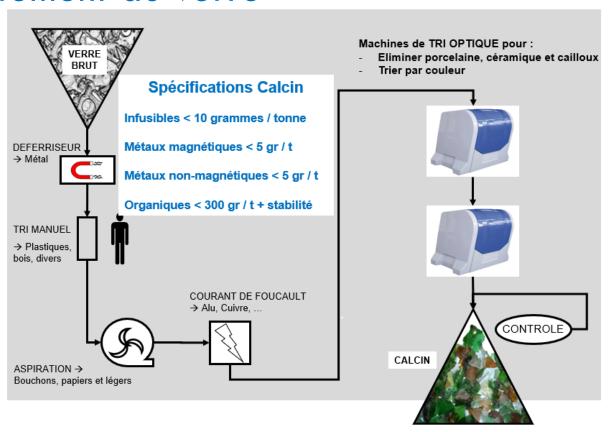


Une démarche historique bien établie

- ✓ Collecte en place depuis 1974
- ✓ Performance élevée basée sur une organisation de proximité et des centres de traitement performants traitant
 - ✓ Les KSP (Keramiek, Steen en Porcelein ; ou Céramique, pierre et Porcelaine)
 - ✓ Les métaux magnétiques et non magnétiques
 - ✓ Le verre au plomb

✓ Le calcin = première matière première des verriers – 65%

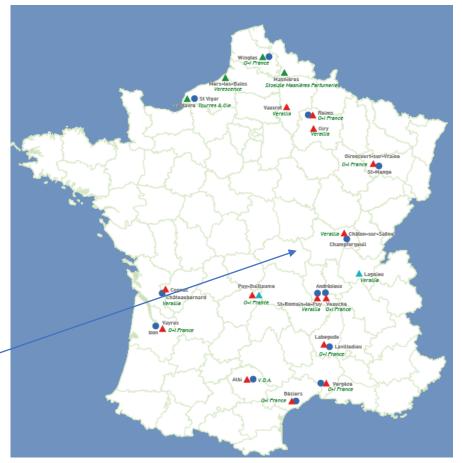
Présentation du gisement vitreux et des filières actuelles de recyclage - Jacques BORDAT


WASTE GLASS PROCESSING STATE OF ART BOTTLE PROCESSING - Cédric, CHOPIN - VERALLIA

Traitement du verre

Une organisation industrielle optimisée pour un recyclage de proximité

17 usines verrières


14 centres de traitement

260 km en moyenne entre la collectivité et la verrerie

1 600 emplois liés à la collecte et au traitement

Des objectifs ambitieux et des actions concrètes

- ✓ « Close the Glass Loop »: 90 % de collecte en 2030
- ✓ Charte « Verre 100% solution » : 90% de collecte en 2025 sur la base d'un engagement de l'ensemble des acteurs de la filières (AMF (Association des maires de France), fédérations des clients, des distributeurs...)
 - \checkmark => + 350 kt en 2025!
 - ✓ Densification des Points d'Apport Volontaire
 - ✓ Extension de la REP au secteur « Café Hotel Restaurant »
 - **√** ...

Sommaire

- 1. Recycler pour décarboner
- 2. Verre d'emballage
- 3. Verre plat
- 4. Laine de verre
- 5. D3E
- 6. Autres usage du calcin

Trois flux principaux avec des performances diverses

- ✓ Chutes de transformation : circuit en place et performant
- ✓ Verre automobile : circuit en place, performance en progrès
- ✓ Verre plat bâtiment : circuit en court de mise en place (REP)
 - ✓ Gisement 200 000t/an
 - ✓ Taux de collecte faible << 10%
 - ✓ Enjeux de qualité et de quantité

Le recyclage du verre plat en boucle fermée, vers une économie circulaire. - Gaber GALAL (SAINT-GOBAIN)

Présentation du gisement vitreux et des filières actuelles de recyclage - Jacques BORDAT

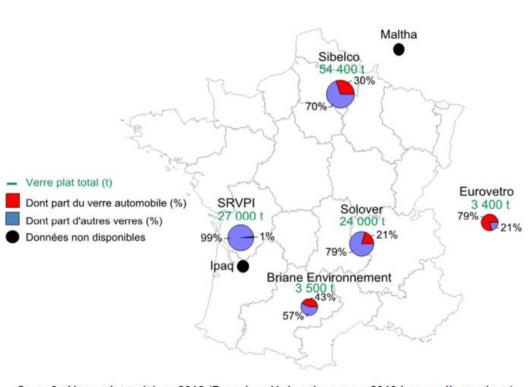
Verre automobile

- ✓ Deux flux principaux
 - ✓ Après-vente 30 kt/an
 - ✓ Véhicule en fin de vie 30 kt/an

- ✓ Après-vente : tri depuis 1997 performance bien établie
- ✓ VHU : potentiel de 25 kg/VHU mais intègre aussi la réutilisation...une mise en œuvre encore longue...

Les enjeux spécifiques de la collecte et du recyclage du verre automobile en France. - Nicolas BREC (TRACAUTO)

Verre plat


Les unités de Recyclage en France :

4 à 5 Centres identifiés dont 2 principaux :

- RECYVERRE à Soissons
- SOLOVER à Montbrison

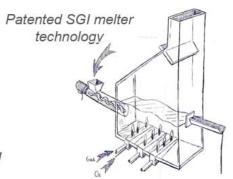
Carte 3 : Verre plat traité en 2013 (Données déclaratives pour 2013 issues d'entretiens)

Sommaire

- 1. Recycler pour décarboner
- 2. Verre d'emballage
- 3. Verre plat
- 4. Laine de verre
- 5. D3E
- 6. Autres usage du calcin

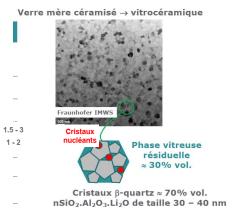
Des challenges spécifiques

- ✓ Laine de verre : moins de SiO₂ que verre emballage et 5% de B₂O₃
- ✓ Risque pour les assiettes de fibrage si présence d'infondu


✓ Essor d'une filière de recyclage de la laine de verre via une fusion immergée

Sorting tests by collectors

Submerged burner for heating & pollutions digestion


Sommaire

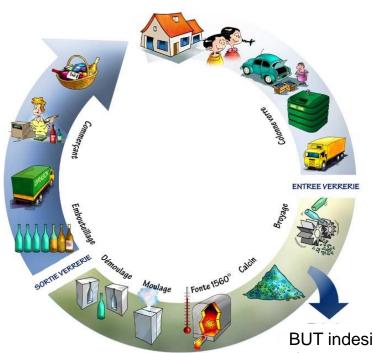
- 1. Recycler pour décarboner
- 2. Verre d'emballage
- 3. Verre plat
- 4. Laine de verre
- 5. D3E
- 6. Autres usage du calcin

Cas des vitrocéramiques

Recyclage des vitrocéramiques : de multiples enjeux environnementaux, économiques et technologiques. - Emmanuel LECOMTE (EUROKERA)

- ✓ Différentes applications : plaque de cuisson, inserts, panneaux anti-feu
- ✓ Une composition moins riche en SiO_2 mais avec beaucoup d'Aluminium et de Lithium et de nombreux autres éléments (Ti, Zr, Zn...) mais faible en Na_2O et K_2O => incompatibilité des calcins!
- ✓ Li: 2/3 des coûts matières premières => enjeux économiques significatifs sur le recyclage en boucle fermée

Le prix des porteurs de Li₂O a été multiplié par 2,5 en 10 ans en raison de la forte demande de l'industrie des batteries électriques



https://www.envie.org/decouvrir-envie/notre-histoire/

Le verre sous ses formes poreuses

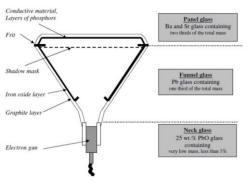
Glass Recycling

> Foam Glasses

Expanded materials with specific characteristics

- •Low apparent density (0.2 1.5 g.cm⁻³)
- •Low thermal conductivity (0.040 0.400 W/m.K)
- •Low phonic coefficient
- •Good chemical durability (lixiviation test EN 12 457-2)
- "Medium" mechanical properties

BUT indesirable residues (metal, ceramic stones, ...)
SLS contaminated by organics (C)

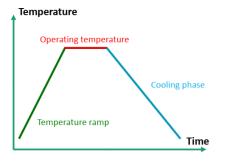


Recyclage D3E: écrans tubes cathodiques

Category	Foaming agent	Mechanism	
Metal carbonates /-sulfates	Na ₂ CO ₃ CaCO ₃ MgCa(CO ₃) ₂ (Dolomite) Na ₂ SO ₄ CaSO ₄	Reactive- / Thermal decomposition	
Metal oxides	Mn _x O _y Fe _x O _y Cr _x O _y PbO	Redox reaction in mel	
Nitrides	AIN TiN Si ₃ N ₄	Redox reaction	
Carbonaceous	SiC Carbon Water glass	Surface reaction Solid-Gas reaction	
	Virgin glass	Redox	

Elaboration

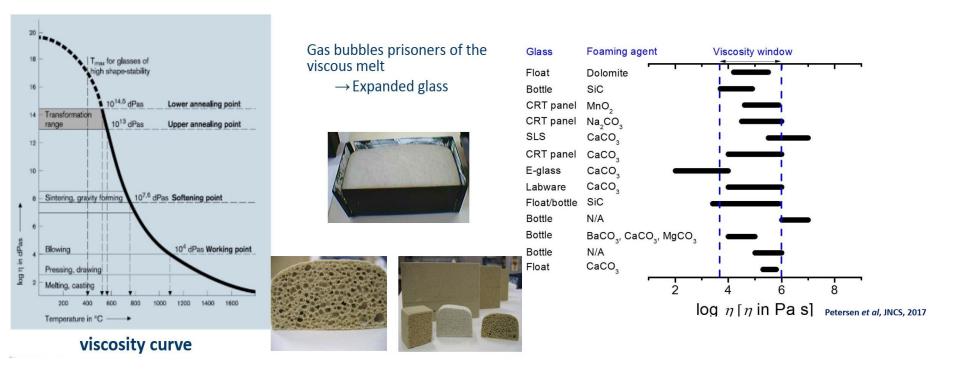
Glass waste + Foaming agent Formation of gas bubbles (CO₂ or N₂)


Expansion Glass foam

Glass waste

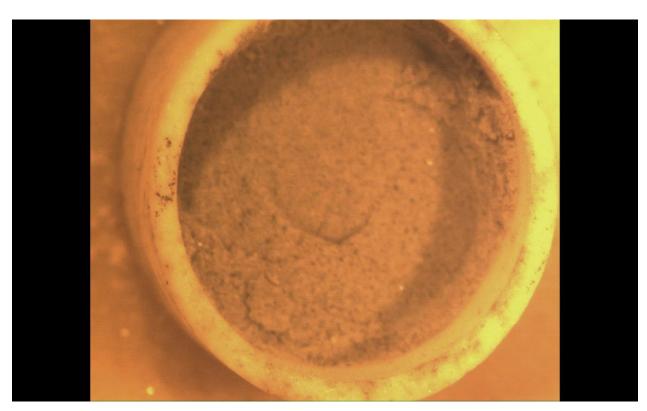
- CRT: Cathode Ray Tube glass
- SLS: Soda-Lime Silicate glass

Foaming agent


AIN, CaCO₃, SiC or C

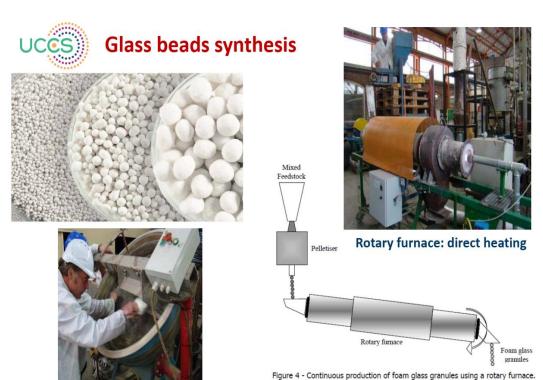
Furnace temperature vs. time

Valorisation du calcin en mousse de verre. - Ronan LEBULLENGER (UNIV RENNES) et François MEAR (UNIV LILLE)


Recyclage D3E : écrans tubes cathodiques

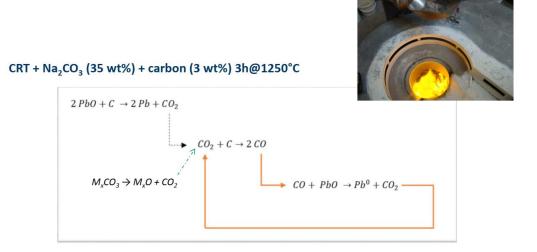
Le verre dans tous ses états: Le recyclage

Foaming process



Recyclage D3E : écrans tubes cathodiques

Insulating conductivity 80 Calcium silicate 58-70 Foam glass 38-50 Stone wool 31-45 29-40 PIR/PUR 23-28



Granulator: rotary plate

Recyclage D3E: écrans tubes cathodiques

uccs

Lead reduction from CRT funnel glass

Lead reduction from CRT funnel glass

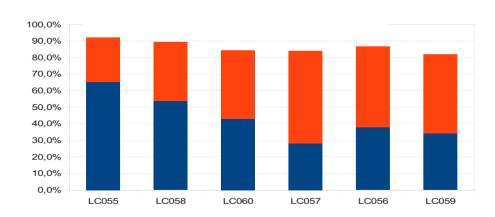
Lead extraction (> 98%) from CRT (cathode ray tubes).

Indoor air treatment by catalytic oxidation over an innovative support coming from recycled glass wastes

- Various types of catalysts
 - acids
 - metal oxides
 - metals : Fe, Co, Ni, Pd, Ru, Rh, Pt...

- ❖ Sorption of metals on a porous support → open cell foams
 - → increase in convection and radial stirring

- Different types of foams :
 - metal foam (very expensive, need of a Al₂O₃ washcoat layer)
 - ceramic foam (multi-step synthesis, energy consuming)

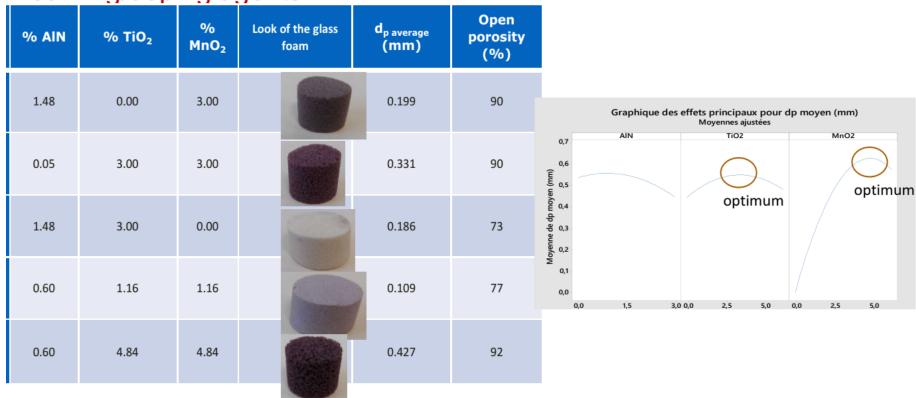


→ Goal: development of an original support (glass foam) for air treatment by catalytic oxidation using O₃ and O₂ as oxidants

Tunning open / close porosity

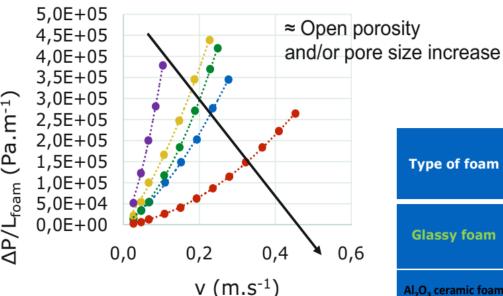
Glass powder + x AlN + y TiO₂

Foaming @ 850°C



- Closed porosity
- Open porosity (%)
- closed porosity= $(\frac{dapp}{dpvc} \frac{dapp}{2.85}) \times 100$
- open porosity = $(1 \frac{dapp}{dpyc}) * 100$

Open porosity ⇒ Filtration, draining application


Closed porosity ⇒ Insulation application

Different properties depending on the quantity and type of foaming/doping agents

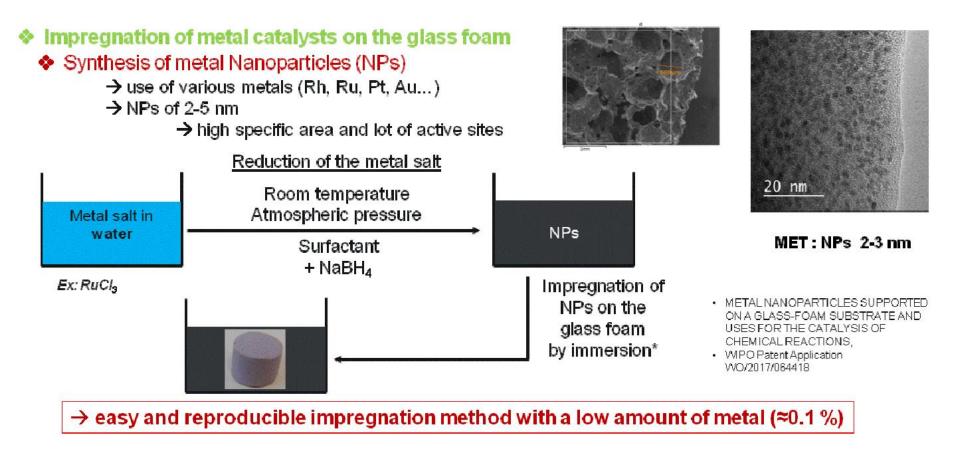
Synthesis conditions: T=880°C during 30 min (temperature increase of 10°C/min, granulometry of the glass: < 100 µm)

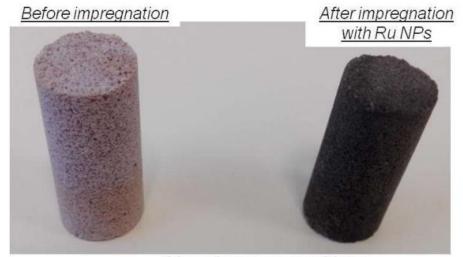
❖ Linear pressure drop in function of the speed of air circulation

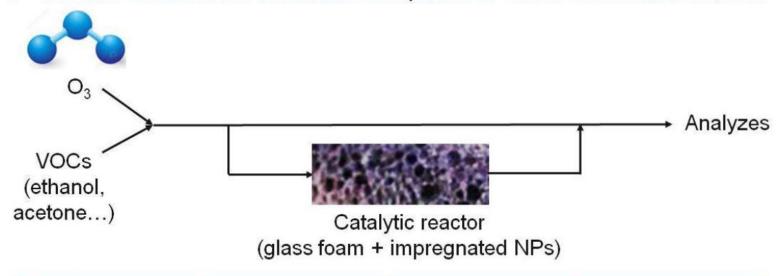
		v (m.s ⁻¹)		
	70000	AIN	TiO2	MnO2
	60000			
-	50000			
DPm.	40000			
Moyenne de DPm.s-1	30000			
Moyer	20000			
	10000			
	0	optimum	optimur	n
		00 00		

Glass	% AIN	%	%
foam	70 AIIV	TiO ₂	MnO ₂
1	1.48	0.00	3.00
2	0.05	3.00	3.00
3	1.48	3.00	0.00
4	0.60	1.16	1.16
5	0.60	4.84	4.84

Type of foam	Synthesis	d _{p average} (mm)	Open porosity (%)	Linear pressure drop at 0.1 m.s ⁻¹
Glassy foam	Eco-friendly (recycling of glass) and cheap (few steps and energy)	0.1 – 1.0	73 - 93	< 250-1500 Pa.m ⁻¹ for the « best foams »
Al ₂ O ₃ ceramic foam	Multi-step synthesis (complex) and energy consuming (1,500°C)	1.529*	75**	204*
from Vesuvius Inc.		1.582*	85**	440*
Metal foam (stainless steel) from Glatt GmbH	Expensive material, need a washcoat layer (Al ₂ O ₃)	0.802*	95**	231*


e du verre




- Successfull deposits of Rh, Ru, Au, Pd
 - drying in an oven
 - without washcoat

Glass foam composition : 0.60%wt AIN, 1.16%wt TiO₂, 1.16%wt MnO₂

- ❖ Performances of the impregnated glass foams in catalytic ozonation
 - Tests of VOCs removal at room temperature with a continuous reactor

Glass foam composition	Metal	Acetone removal	Ethanol removal
AIN + TiO ₂	Ru	30 %	75%

Operating conditions:

- Low gas superficial velocity of 1 mm.s 1 → need to improve the mass transfer
- 13.5 g.Nm-3 of ozone at the input of the reactor
- Residence time: 30 secondes

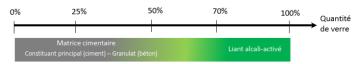
Conclusion and prospect

- Development of the synthesis of an innovative catalytic material from recycled glass wastes
 - → glass foams with modular properties (porosity, pore size, hydrophilicity...) synthesised from recycling glass wastes
 - → easy to do NPs solution, various metals can be used, low amount of metal (≈0.1%)
- Impregnated glass foams are active in catalytic ozonation to remove a lot of VOCs (acetone, ethanol...) for industrial air treatment
- Other tries in catalytic ozonation are in progress in order to optimize material properties
- Tests with O2 as oxidant (250°C ≤ T ≤ 350°C) are in progress for indoor air treatment

Mousses de verres et Arts & Design...

➤ Glass recycling: a link between Arts and Sciences

EESAB, École européenne supérieure d'art de Bretagne Steven AKOUN (stevenakoun.com)


Sommaire

- 1. Recycler pour décarboner
- 2. Verre d'emballage
- 3. Verre plat
- 4. Laine de verre
- 5. D3E
- 6. Autres usage du calcin

Valorisation du verre de recyclage dans le béton. - Rachida IDIR (C

Vers le béton?

✓ Intégration dans la matrice cimentaire versus liant alcali-activé (de 70 à 100% de verre)

✓ Deux réactions antagonistes : réaction alcali-silice (granulat) et pouzzolanique (fines)

√ Freins: normalisation n'intégrant pas cette matière...

Conclusion

- ✓ Un panorama complet des différentes filières
- ✓ Des niveaux de maturité différents suivant les filières
- ✓ Des sujets à approfondir?

Le Verre dans tous ses états Le Verre sous toutes ses formes

Gracias Obrigado Thanks 谢谢 Merci Trugarez

à toutes et à tous...

