Le stockage de données pérenne dans les erres : mythe ou réalité ?

<u>A. Royon¹, K. Bourhis², G. Papon¹,</u> <u>Y. Deshayes³, T. Cardinal², et L. Canioni¹</u> CPMOH-CNRS / Université de Bordeaux, France ICMCB-CNRS / Université de Bordeaux, France IMS-CNRS / Université de Bordeaux, France

> GDR Verres 25/11/2010

un enjeu de société

Politique des gouvernements et des grandes institutions \rightarrow Numérisation des données (scientifiques, industrielles, administratives, médicales, artistiques, personnelles).

UNESCO \rightarrow Notre civilisation numérique produit 10¹⁸ Octets/an.

magnétiques

Disque dur et clé USB :

- © Capacité de stockage élevée (jusqu'à 500 Go).
- © Coût faible (1 €Go).
- Sensibilité aux ondes EM.
- 😕 Crash accidentel.
- \bigotimes Faible durée de vie (< 10 ans).

Stockage en réseau :

- Capacité de stockage très élevée.
- Condance des données.
- ⊗ Coût élevé (300 à 3000 €To/an).
- Sécurité.
- Concommation d'énergie

i comorogres opriques

Disques optiques numériques :

- © Coût faible (1 €disque).
- Orange de stockage faible (50 Go maximum pour le « Blu-ray »).
- Solution Faible durée de vie (< 10 ans) \rightarrow Matériau = polymère.

echnologies ne sont pas adaptées au stockage pérenne des données. le groupe de travail PNR des Académies des Sciences et des Technologies *devient urgent de développer des matériaux innovants pour un stockage de l'information à long terme"*.

-Expectancy for Digital Data, <u>http://www.academie-sciences.fr/publications/rapports/pdf/rapport_infonum_2010_gb.pdf</u> (2010).

W I utul es technologies (SD ou plus)

Holographique :

- Capacité de stockage élevée (jusqu'à 6 To).
- ⊗ Coût élevé (disque = 180 \$, lecteur = 18000 \$).
- \bigotimes Faible durée de vie \rightarrow Matériau = polymère.

Point par point par absorption multi-photonique :

- Capacité de stockage élevée (~ 1 To).
- Orechnologies d'écriture et de lecture non disponibles sur le marché.
- Oiaphonie entre les couches (modification de l'indice de réfraction).
- Ourée de vie ? Dépend du matériau (polymère ou verre).

orods d'or dans polymère. dimensions d'espace + larisation + spectre = 5D

Holographic Ve Disk (HVI

Digital Multi Disk (DMI

de matériaux transparents

- echnique flexible pour induire des modifications ucturelles ou chimiques) localisées dans un matériau.
- ossibilité de fabriquer des motifs en 3D.
- tilisée pour de nombreuses applications.
 - Guides d'onde

Davis *et al.*, Opt. Lett. **21**, 1729-1731 (1996).

Mémoires optiques

Cristaux photoniques

Sun *et al.*, Opt. Lett. **26**, 325-327 (2001).

Micro-canaux

Cristaux fonctionnels

de matériaux transparents

mpulsions femtosecondes dans le PIR focalisées :

- Densité de puissance élevée.
- Absorption non-linéaire.
- mpulsions femtosecondes :
 - Déposition rapide d'énergie.
 - Minimisation des effets thermiques.
- Cadence élevée :
 - Accumulation d'énergie.
 - Effets thermiques cumulés.
- Absorption non-linéaire.
- Absence d'effet thermique.

Repuises un materiau

- oifférents types de réponse suivant l'énergie du laser.
- ans le cas de la silice :
- ≻ Isotrope (type 1) : guides d'onde, coupleurs...
- Biréfringent (type 2) : contrôleurs de polarisation...
- Micro-cavité (type 3) : mémoires, cristaux photoniques...

Type 1

Gattas and Mazur, Nature

Type 2

Shimotsuma et al., Phys.

Type 3

Gattas and Mazur, Nature

-VIV Le stockage de données dans les veri

Aicro-cavités (type 3) :

Glezer *et al.*, Opt. Lett. **21**, 2023-2025 (1996).

- Capacité de stockage élevée (~ 1 Tbits.cm⁻³).
- Ecriture = laser femtoseconde / Lecture = microscopie optique en lumière blanche.
- 3 dimensions de l'espace.
- Diaphonie entre les couches (modification de l'indice de réfraction).

-VIN Le stockage de données dans les veri

- Aicro-cavités (type 3) :
- Squier and Müller, App. Opt. **38**, 5789-5794 (1999).
- Capacité de stockage élevée (~ 1 Tbits.cm⁻³).
- Ecriture = laser femtoseconde / Lecture = microscopie par GTH.
- 3 dimensions de l'espace.
- Oiaphonie entre les couches (modification de l'indice de réfraction).
- Nano-réseaux" (type 2) :
- Shimotsuma *et al.*, Adv. Mat. **22**, 4039-4043 (2010).
- Capacité de stockage élevée (~ 300 Gbits.cm⁻³).
- Ecriture = laser femtoseconde / Lecture = CCD + polariseurs.
- 3 dimensions de l'espace + direction de l'axe lent + retard = 5D.
- ^(C) Diaphonie entre les couches (modification de

(FPL)

omposition chimique : 55% ZnO – 40% $P_2O_5 - x\% Ga_2O_3 - (5-x)\% Ag_2O_3$

Bande d'absorption @ 260 nm. Bande d'émission @ 380 nm.

Fluorescence intrinsèque bleue. Excitation @ 254 r

teraction avec la lumière similaire au processus de photographie argentique \rightarrow Photochi

Lapertence

Dispositif expérimental :

rocédure expérimentale :

• Laser :

Wavelength	1030 nm
Pulse width	500 fs
Repetition rate	10 MHz
Average power	6 W

• Modulateur acousto-optique :

Number of pulses	$10^2 - 10^6$
Irradiance	9 – 14 TW.cm ⁻²

• Optique de focalisation :

Reflection objective	36x NA=0.52
Beam diameter	1 µm

• Platines de translation:

Range	25 mm
Speed	$0 - 25 \text{ mm s}^{-1}$

par GTH

icroscopie en lumière blanche :

icroscopie par GTH :

- Le même laser peut-être utilisé, mais à une énergie moindre (< 10 nJ / pulse).
- à AOM

laser

PMT

- Signal de GTH collecté par un **PMT** et un filtre passe bande.
- Mécanisme de contraste = $\Delta \chi^{(3)} \rightarrow$ Permet d'imager les interfaces.

$$\chi_{3\omega} \propto \left| \chi_{irradiated}^{(3)} - \chi_{unirradiated}^{(3)} \right|^2$$

• Scanner le système mène à une image en 2D de $\Delta \chi^{(3)}$.

Stockage de données par GIII

Pas de variation de n mais variation de $\chi^{(3)}$ avec une grande résolution spatiale.

- Images inscrites dans le verre :
 - Taille : 12×12 pixels (30 µm × 30 µm).
 - Ecart entre pixels : $3 \mu m$. Diamètre pixel : 2
 - Ecart entre couches : $10 \ \mu m$.
 - Capacité de stockage : *1 Gbits.cm*⁻³.
 - Pas de diaphonie.
 - Capacité de stockage élevée.
 - Moyen élégant de stocker l'information.
 - 🟵 Nécessité d'un laser femtoseconde pour lire l'information.

Calacterisation en nuor escence

icroscopie en lumière blanche :

• Microscopie confocale de fluorescence

réation d'agrégats d'argent fluorescents, même où l'indice de réfraction n'a pas difié ($\Delta n < 10^{-4}$).

éactions photochimiques :

$$Ag^{+} + hv \rightarrow e^{-} + Ag^{2+}$$
$$Ag^{+} + e^{-} \rightarrow Ag^{0}$$
$$Ag^{+} + Ag^{0} \rightarrow Ag_{2}^{+}$$

Su ucui es photo-munites

- Fluorescence distribuée dans un anneau e 2D, un tube en 3D.
- Epaisseur de l'anneau : 80 nm $<< \lambda_{laser}$.

Image de fluorescence en 2D

Image de fluorescence

Image MEB

un processus en 3 étapes

1) Photo-excitation \rightarrow Génération d'électrons libres par absorption 4 photons.

i otennei ue la technique

MEB-HR

Fluorescence (λ_{exc} =405 nm)

Fluorescence (λ_{exc} =405 nm)

églage de la dose (fluence et/ou nombre d'impulsions)

Contrôle des propriétés de fluorescence :

arge absorption UV (de 200 à 420 nm).

arge fluorescence blanche (de 400 à 800 nm).

Bourhis *et al.*, J. Non. Cryst. Sol. DOI 10.1016/j inoncrysol 2010.03.033 (2010)

: échelle de gris

e de fluorescence de 256 lignes de 5 iso-points.

- $ce : 5 \text{ J.cm}^{-2}$. Nombre d'impulsions : $de10^2$ à 10^7 .
 - Limites :
 - ➢ Stabilité du laser (< 1%).</p>
 - > Homogénéité du matériau (~ 1%)

Intensité de fluorescence vs nombre d'impulsions et v lues associées.

5100 2500 1600 1200 1200 - 300 - 300

L'entre et recture des données

Images d'origine JPEG : *100 × 100 pixels*.

r alsabilite un procede

Images d'origine JPEG :

Taille : *100 × 100 pixels*.

Dynamique d'encodage : 8 bits (256 niveaux). >

• Des de photo blanchiment

- Images inscrites dans le verre :
 - Taille : 100×100 pixels (300 µm × 300 µm).
 - Ecart entre pixels : $3 \mu m$. Diamètre pixel : $2 \mu n$
 - Ecart entre couches : $20 \ \mu m$.
 - Dynamique effective : 4 bits (16 niveaux de gra
 - Capacité de stockage : 20 Gbits.cm⁻³.

NECONSTRUCTION RES ROUMEES

Image d'origine.

Image inscrite vue par microscopie confocale de fluorescence.

Image décodée affichée sur 256 niveaux.

econstruction précise des données.

Iais pixellisation à cause de la dynamique plus ble.

Avantages:

- Disponibilité commerciale du lecteur (Blu-ray).
- Capacité de stockage élevée (~ 100 Tbits.cm⁻³).
- Pas de diaphonie entre les couches ($\Delta n < 10^{-4}$).
- Pas de photo-blanchiment (agrégats stables dans la matrice).
- Vitesse de lecture élevée (~ 500 Mbits.s⁻¹).
- Tolérance au vieillissement (les verres ne changent pas au cours temps), à la température (< 350° C) et à l'humidité (faible lubilité, 1 µg.cm⁻².min⁻¹).
- Améliorations :
- Vitesse d'écriture
- laser plus puissant et masques de phase.

Dynamique d'encodage

longueur d'onde du laser de lecture / homogénéité du materiau.

