

www.cea.fr

LES TERRES RARES DANS LES VERRES DE CONDITIONNEMENT DE DÉCHETS NUCLÉAIRES

Avec la collaboration de O. Pinet, A. Laplace, S. Schuller, O. Delattre, E. Regnier, D. Perret, A. Kidari, E. Gasnier, E. Molières, F. Angeli, J-L. Dussossoy, S. Peuget

Atelier Terres Rares Isabelle GIBOIRE

10 – 11 SEPTEMBRE 2012

- Contexte Origine des terres rares et actinides dans les déchets nucléaires
- Généralités sur la formulation des verres pour le conditionnement des déchets nucléaires
- Effet des terres rares sur les propriétés redox du bain de verre
- Effet des terres rares et actinides sur la qualité microstructure du verre (homogénéité du verre, tendance à la dévitrification)
- Effet des terres rares et actinides sur le comportement à long terme du verre (durabilité chimique, résistance à l'auto-irradiation)

CONTEXTE – ORIGINE DES TERRES RARES ET ACTINIDES DANS LES DÉCHETS NUCLÉAIRES

- → Composition des solutions de produits de fission liée:
 Nature du combustible
 - Taux de combustion
 - Temps de refroidissement avant retraitement

✓ Réacteur Eau Pressurisée - Combustibles UOX ou UOX - MOX

→ Solutions de Produits de fission et Actinides (UOX) (déchets haute activité)

✓ Réacteur Uranium Naturel Graphite Gaz – Combustibles UNGG type UMo-MoSnAl

 \rightarrow Solutions de Produits de fission et Actinides enrichis en Mo (UMo)

✓ Rinçage des usines de retraitement

 \rightarrow Solutions de rinçages enrichies en Ce, Na, Mo, P (moyenne activité)

CONTEXTE – ORIGINE DES TERRES RARES ET ACTINIDES DANS LES DÉCHETS NUCLÉAIRES

Compositions des solutions de déchets après retraitement

PFA = Produits de Fission (PF) + Actinides (Ac = AM + U, Pu)

- Teneur en TR augmente avec Tc

- Enrichissement en AM avec Tc

∑ (TR + Ac) ~ 30 – 35% PFA

CONTEXTE – EFFET DES TERRES RARES ET ACTINIDES SUR LA RADIOTOXICITÉ

→ Au-delà de 500 ans, majeure partie de la radiotoxicité due aux actinides mineurs

Atelier Terres Rares | 10 -11 Septembre 2012 | PAGE 5

SIMULATION DES ACTINIDES PAR LES TERRES RARES

 \rightarrow En labo inactif, les actinides sont simulés par les terres rares

Actinides mineurs (Am, Np, Cm) \rightarrow Nd

Valence dans les verres : Am (III), Cm (III), Np (IV)

Ex: Am
$$(5f^7, 7s^2) - r (Am^{3+}) = 1,09 \text{ Å} (coordinence 8)$$

Nd $(4f^4, 6s^2) - r (Nd^{3+}) = 1,11 \text{ Å} (coordinence 8)$

Source Shannon

$Pu \rightarrow Ce$

- Double degré d'oxydation Pu³⁺/Pu⁴⁺, Ce³⁺/Ce⁴⁺
- Limitation à la simulation

$$Pu^{3+}/Pu_{tot} \sim 50\%$$
 à T ~ 1350 – 1450°C
Ce³⁺/Ce_{tot} ~ 50% à T ~ 1100 – 1200°C

Atelier Terres Rares | 10 -11 Septembre 2012 | PAGE 6

LE VERRE COMME MATRICE DE CONDITIONNEMENT DES DÉCHETS DE HAUTE ACTIVITÉ

- Excellente durabilité chimique,
- Une souplesse du réseau vitreux permettant l'incorporation

d'une large gamme d'éléments chimiques,

• Bonne stabilité sous radiation.

CONDITIONNEMENT DES DÉCHETS DE HAUTE ACTIVITÉ

VERS UNE AUGMENTATION DU TAUX D'INCORPORATION DANS LES VERRES

Changement de technologie creuset chaud → creuset froid → permet d' étudier d' autres matrices vitreuses plus réfractaires, contenant un plus haut taux de PFA

	Verre	Type de déchets	Contexte	% PFA dans le verre	∑ (TR + Ac) dans le verre
A L' ETUDE	Verre actuel	UOX	- Creuset chaud T _{elab} = 1100°C - Creuset froid T _{elab} = 1200°C	-12,7% nominal verre de ref -17,5% nominal actuel -18,5% borne haute	4,2% 6,9%
	Nouvelles formulations (verre peralcalin) (thèses I. Bardez, A. Quintas, N. Chouard (2001 – 2011))	UOX - MOX	Creuset froid T _{elab max} = 1300°C	22,5%	9,2%
	Nouvelles formulations (verre peralumineux) (thèse E. Gasnier (2010 – 2013))	UOX - MOX	Creuset froid T _{elab max} = 1300°C	≥ 22,5 % (en cours d' évaluation)	≥ 9,2%
	Excès de comp	ensateurs de cha	rge Défau	it de modificateurs de rése	au

par rapport à l'aluminium

 $R_{\rm P} = \frac{[\text{Oxydes modificateurs}]}{[\text{Oxydes modificateurs}] + [\text{Alumine}]} \times 100 > 50\%$

 $R_{\rm P} = \frac{[\text{Oxydes modificateurs}]}{[\text{Oxydes modificateurs}] + [\text{Alumine}]} \times 100 < 50\%$

ETUDES DE FORMULATION D'UN VERRE DE CONDITIONNEMENT

Atelier Terres Rares | 10 -11 Septembre 2012 | PAGE 11

EFFET DES TERRES RARES SUR LES PROPRIÉTÉS RÉDOX DU BAIN DE VERRE

EFFET DES TERRES RARES SUR LE REDOX : CAS DU CÉRIUM Etudes O. Pinet, A. Laplace (LDMC)

Besoin de contrôler le redox du verre

- \rightarrow Sur le procédé de vitrification :
- Phénomènes de moussage,
- Pb d' homogénéité du bain de verre...

 \rightarrow Sur le verre final :

- Limite de solubilité dans le verre différente en fonction de l'état d'oxydation (cérium)

Propriétés d'oxydo-réduction des verres

	Solutions aqueuses	Silicates fondus
Solvant	H ₂ O	$ \underbrace{ \begin{array}{c} Na^{+} O \\ Si \end{array} } \underbrace{ \begin{array}{c} O \\ Si \end{array} } \underbrace{ O \\ Si \end{array} } \underbrace{ \begin{array}{c} O \\ Si \end{array} } \underbrace{ O \\ Si \end{array} } \underbrace{ \begin{array}{c} O \\ Si \end{array} } \underbrace{ O \\ Si \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
Couple rédox de référence	H ⁺ /H₂ 2H⁺ + 2e⁻ = H₂	O_{2diss}/O^{2-} $O_{2diss} + 4e^{-} = 2O^{2-}$
Grandeur standard	E° _{ox/red} (V)	f _{carO2(ox/red)} (atm)
Grandeurs	E _{eq} (V/réf)	f _{O2} (atm/réf)
caractéristiques	рН	a(O ²⁻), T

Variation de l' état d' oxydation du verre selon:

- fugacité en oxygène : f_{O2} ↗ : [ox] ↗
- ► basicité du verre : A 丙 : [ox] 丙
- ► température :T
 T
 [red]
- composition du verre

- $f_{\rm O2}$ ou $P_{\rm O2}$: fugacité en oxygène dans les silicates fondus Mesure de la $P_{\rm O2}$ par potentiométrie
- f_{carO2} : fugacité caractéristique du couple rédox

EFFET DES TERRES RARES SUR LE REDOX : CAS DU CÉRIUM Etudes O. Pinet, A. Laplace (LDMC)

Modélisation de l'équilibre Ce³⁺/Ce⁴⁺

- → Mesures électrochimiques sur le couple Ce³⁺/Ce⁴⁺
 - Par voltampérométrie à vagues carrées
 - Sur 4 compos de verres silicatés et borosilicatés avec $0,52 < \Lambda < 0,65$ et $900^{\circ}C < T < 1250^{\circ}C$

$$\log \left[\frac{Ce^{3+}}{Ce^{4+}} \right] = 4.319 - \frac{3328}{T} - 3.631 \cdot \Lambda - 0.25 \log f_{O_2}$$

O. Pinet et al. JNCS 352 (2006) 5382

→ <u>Cas d'un verre borosilicaté (wt %)</u> : 59SiO₂ - 18B₂O₃ - 7Na₂O - 4Al₂O₃ - 5CaO (autres : 6,50)

EFFET DES TERRES RARES SUR LE REDOX : CAS DU CÉRIUM Etudes O. Pinet, A. Laplace (LDMC)

Phénomène de moussage dans les verres

EFFET DES TERRES RARES ET ACTINIDES SUR LA QUALITÉ / MICROSTRUCTURE DU VERRE

HOMOGÉNÉITÉ DU VERRE,
TENDANCE À LA DÉVITRIFICATION

(CAS DES VERRES PERALCALINS ET VERRES PERALUMINEUX)

CAS DES VERRES PERALCALINS

Principale limitation avec l'augmentation de la teneur en terres rares :

→ Formation d'apatites silicatées de type Ca₂TR₈(SiO₄)₆O₂

Autres phases pouvant incorporer des TR \rightarrow Powellite CaMoO₄ \rightarrow Cérianites (Ce-Zr)O₂

Potentiellement présentes au cours de nos études de formulation :

- Au cours de la réaction fritte + calcinat
- Dans le bain de verre au-delà de la limite de 'solubilité' des terres rares
- Dans le verre après traitement thermique (refroidissement lent à cœur de conteneur)
- Dans l'auto-creuset du creuset froid (fort gradient thermique)

EFFET DES TERRES RARES ET ACTINIDES SUR L'HOMOGÉNÉITÉ DU VERRE

Post-doc A. Kidari (LDMC – LMPA)

→ Que se passe-t-il au-delà de la limite de solubilité des TR-Ac dans le verre ?

Etude de la **'solubilité'** cumulée Ln-Ln et Ln-Ac au sein de verres 'nouvelles formulations' simplifiés SiO₂-B₂O₃-Na₂O-Al₂O₃-CaO-La₂O₃-Nd₂O₃/AmO₂ (T = 1200°C)

Notion de 'solubilité' délicate dans un verre :

- Limite de solubilité d'un élément i dans le bain fondu à l'équilibre thermodynamique
- Fait intervenir une notion de cinétique d'élaboration
- La visualisation de cette limite fait intervenir un traitement thermique
- La détermination expérimentale de cette limite est fonction de la technique de caractérisation

→ Limite d' incorporation

 \rightarrow En labo inactif (cas La – Nd):

La trempe (6.10⁴C/h) permet de figer l'état fondu et d'approcher cette limite

→ <u>En labo actif (Atalante – cas La - Am)</u>: Le dispositif du four ne permet pas la trempe du verre → refroidissement du verre à ~ 350°C/h (// TT) → Limite max abaissée

EFFET DES TERRES RARES ET ACTINIDES SUR L'HOMOGÉNÉITÉ DU VERRE : CAS La-Nd Post-doc /

Post-doc A. Kidari (LDMC – LMPA)

- Incorporation $TR_2O_3 \uparrow quand la fraction La_2O_3 \uparrow$

Phases apatites Ca₂TR₈(SiO₄)₆O₂ au-dessus de la limite de solubilité avec cristallisation
 d'apatite favorisée pour les cations trivalents avec un rayon ionique proche de Ca²⁺

EFFET DES TERRES RARES ET ACTINIDES SUR L'HOMOGÉNÉITÉ DU VERRE : CAS La-Nd Post-doc A. Kidari

Microsonde (E. Brackx, S. Poissonnet)

DRX

→ Formation d' une phase apatite $Ca_2TR_8(SiO_4)O_2$ en solution solide $Ca_2La_{8-x}Nd_x(SiO_4)_6O_2$

→ Rapport R= La/(La+Nd) de la phase apatite proche de la valeur théorique (verre parent) avec léger enrichissement en Nd, d' autant plus marqué que le taux de charge augmente

EFFET DES TERRES RARES ET ACTINIDES SUR L'HOMOGÉNÉITÉ DU VERRE : CAS La-Am Post-doc /

Post-doc A. Kidari

Verre peralcalin hétérogène (> LS) SiO₂-B₂O₃-Na₂O-Al₂O₃-CaO-La₂O₃-AmO₂

mass.%, R = 0,5	La ₂ O ₃	AmO ₂	Σ _{La2O3/AmO2}
A261 – théorique	8.16	13.67	21.83

Microscopie optique

TENDANCE DES TERRES RARES À LA DÉVITRIFICATION

Risques de cristallisation à forte teneur en TR

- Au refroidissement du colis de verre

 \rightarrow Au labo, simulation par un RLT de 1°C/min

COMPORTEMENT DES TERRES RARES LORS D'UNTRAITEMENT THERMIQUENouvelles formulations

→ Dans le cas d' un refroidissement 1°C/min, on favorise la cristallisation hétérogène des apatites

COMPORTEMENT DES TERRES RARES LORS D'UN TRAITEMENT THERMIQUE

Nouvelles formulations Verres simplifiés

Formule théorique de l'apatite : Ca₂Nd₈(SiO₄)₆O₂ ou Ca₂Nd₈Si₆O₂₆

Proposition d'une formule d'apatite			
	avec n(Ox) = 26 fixe		
Nd10	Ca _{3,18} Nd _{7,23} Si _{5,96} O ₂₆		
Nd16	Ca _{2,48} Nd _{7,68} Si _{6,00} O ₂₆		
Nd30	Ca _{1,76} Nd _{8,20} Si _{5,97} O ₂₆		

RLT

→ Enrichissement des cristaux d'apatite en Nd à mesure que $[Nd_2O_3]$ augmente (// apatites > LS)

Atelier Terres Rares | 10 -11 Septembre 2012 | PAGE 25

TENDANCE DES TERRES RARES À LA DÉVITRIFICATION

Risques de cristallisation à forte teneur en TR

- Au refroidissement du colis de verre

- Dans l'auto-creuset

- Chauffe par induction directe (~1200°C),
- Refroidissement des parois par circulation d'eau (T<100°C)
- ⇒∇T ~1000°C.cm⁻¹
- \Rightarrow couche de verre solidifiée (« auto-creuset »).

COMPORTEMENT DES TERRES RARES LORS D'UN TRAITEMENT THERMIQUE (LDMC – CEMHTI)

 \rightarrow Dans I' auto-creuset, fort gradient thermique (1000°C/cm)

APPORT DES TERRES RARES À LA SOLUBILISATION DU MOLYBDÈNE Thèse N. Chouard (LDMC – Chimie Paris)

Verres simplifiés SiO₂-B₂O₃-Na₂O-Al₂O₃-CaO-MoO₃-Nd₂O₃

A : Apatite $Ca_2Nd_8(SiO_4)_6O_2$

Lorsque $[Nd_2O_3]$ \uparrow , tendance à la séparation de phase et cristallisation de CaMoO₄↓

Atelier Terres Rares | 10 -11 Septembre 2012 | PAGE 28

CAS DES VERRES PERALUMINEUX

Thèse E. Gasnier (LDMC – CEMHTI)

La solubilité de la TR semble augmenter fortement dans le domaine peralumineux

TENDANCE DES TERRES RARES À LA DÉVITRIFICATION

Thèse E. Gasnier (LDMC – CEMHTI)

Système simplifié SiO₂-B₂O₃-Na₂O-Al₂O₃-CaO-Nd₂O₃

EFFET DES TERRES RARES ET ACTINIDES SUR LA MICROSTRUCTURE DU VERRE - BILAN

→ Pour la formulation de verres de conditionnement, on cherche à optimiser les conditions exp. pour avoir un verre homogène dans la fonte et à l'issue du refroidissement du colis

→Sachant que la solubilité / tendance à la cristallisation de la TR dépend de :

- Sa nature → Imposée par la compo du déchet sauf si TR
- La température d'élaboration
- Son état rédox
- Sa teneur
- La composition du verre (Rp par exemple)

 → Jouer sur la compo du verre et la teneur en PFA (tout en respectant les autres critères : solubilité des autres éléments, comportement à long terme...)

présente dans la fritte de verre

→ Privilégier La à Nd EFFET DES TERRES RARES ET ACTINIDES SUR LE COMPORTEMENT À LONG TERME DU VERRE (DURABILITÉ CHIMIQUE, RÉSISTANCE À L'AUTO-IRRADIATION)

EFFET DES TERRES RARES SUR LA DURABILITÉCHIMIQUE DES VERRESEtudes F. Angeli, E. Molières (LCLT)

→ Les terres rares dans les verres conduisent à des degrés d'altération par l'eau inférieurs à ceux obtenus en présence d'éléments dits durcisseurs comme le zirconium

Etudes F. Angeli, E. Molières (LCLT)

- Formation d'une couche d'altération passivante même pour les fortes teneurs en La
- Rétention de l'intégralité du lanthane dans des zones mixtes La, Ca

ILLUSTRATION DU COMPORTEMENT DES ACTINIDES SOUS AUTO-IRRADIATION

Post-doc A. Kidari

Verre peralcalin hétérogène (> LS) SiO₂-B₂O₃-Na₂O-Al₂O₃-CaO-La₂O₃-AmO₂

COMPORTEMENT DES ACTINIDES SOUS AUTO-IRRADIATION

Post-doc A. Kidari (LDMC – LMPA)

Dose alpha accumulée

AmO ₂ (mass.	Dose accumulée (α.g ⁻¹)		
~)	200 jours	20 jours	
Total 11.76 %	2.37 x 10 ¹⁷	2.28 x 10 ¹⁶	
Matrice (8.46 %)	1.70 x 10 ¹⁷	1.64 x 10 ¹⁶	
Apatites (50 %)	1.49 x 10 ¹⁸	9.69 x 10 ¹⁶	

Risque de comportement différentiel sous irradiation : Fissuration suite à l'amorphisation de l'apatite

Atelier Terres Rares | 10 -11 Septembre 2012 | PAGE 36

BILAN – CONCLUSIONS : APPORT DES TERRES RARES

Avantages

- Tg ↑ → ↑ PFA dans verre et P_{th} des colis
 → à PFA fixe, ↑ TR dans fritte de verre
- Apport à la solubilisation d'éléments de faible de solubilité (Mo)
- Apport à la durabilité chimique

Inconvénients

Moussage du bain de verre
 → Nécessité de contrôler le rédox du Cérium

Inconvénient ? A étudier...

- Cristallisation d'apatites possible à haute teneur en TR (> LS ou au cours du RLT)
 - → Aujourd' hui, inconvénient ([TR]_{apatite} : 50% mass.)
- → Nécessité d' optimiser $[TR_2O_3]$ et compo de verre pour s' assurer de l' homogénéité des verres après RLT

→ Actions menées sur l'étude du CLT de vitrocristallins (durabilité chimique, résistance à l'irradiation)

PAGE 37

Merci de votre attention!

<u>Et merci à :</u> -Tous les collaborateurs de ce travail -Toute l'équipe du LDMC -E. Brackx, S. Poissonnet -JL. Dussossoy, M. Magnin -V. Montouillout, N. Pellerin -D. Caurant, O. Majerus

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Marcoule | 30207 Bagnols-sur-Cèze cedex T. +33 (0)4 66 79 66 06 F. +33 (0)4 66 79 18 80

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Direction de l'Energie Nucléaire DTCD SECM LDMC