Approche par dynamique moléculaire Ce que je sais d'elle...

Matthieu Micoulaut

Laboratoire de physique théorique de la matière condensée Sorbonne Université

matthieu.micoulaut@sorbonne-universite.fr

Je dispose de la "*trajectoire*" d'un verre : $x_i(t)$, $y_i(t)$, $z_i(t)$.

Que puis-je en faire ? Comme l'ai-je obtenue ?

3/22

• Ces champs de force permettent d'accumuler une trajectoire par integration du Principe Fondamental de la Dynamique.

$$V_{ij}(r)=rac{q_iq_j}{r}+A_{ij}e^{-r/
ho_{ij}}-rac{C_{ij}}{r^6}$$

- Pas toujours disponible dans la littérature (composition) ou pas adapté en fonction des conditions thermodynamiques envisagées (haute pression).
- Peu d'informations sur la nature de la liaison chimique (transfert de charge dans les covalents, métalliques,...)
- Description des propriétés électroniques absente (Raman, IR, XPS,...)

A. Baroni et al., JCP 151 (2019)

M. Bauchy, M. Micoulaut, JNCS 377 (2013)

< □ > < 同 > < 回 > < 回 > < 回 >

2 Histoire thermique

3 Structure-propriété de chalcogénures

Propriétés spectroscopiques et électroniques

(CAR PARRINELLO) MOLECULAR DYNAMICS

1 21

Postulated Lagrangian by Car and Parrinello (1985):

$$L = \sum_{I} \frac{1}{2} M_{I} v_{I}^{2} + \sum_{i} \frac{1}{2} \mu_{i} \langle \dot{\Psi}_{i} | \dot{\Psi}_{i} \rangle - V \left[\{\Psi\}, \{\mathbf{R}\} \right] + \sum_{ij} \Lambda_{ij} \left(\langle \Psi_{i} | \Psi_{j} \rangle - \delta_{ij} \right)$$

nuclear electron potential orbital kinetic energy "energy orthogonality (L.M

From Euler-Lagrange, one obtains the equations of motion : 21

Decoupling between a "real" ion dynamics (mass M_l) and the fictitious electronic dynamics (mass μ_i).

M. Micoulaut (SU)

917

THE (CAR PARRINELLO) MOLECULAR DYNAMICS RECIPE

1 For a given set of $\{\mathbf{R}_I\}$, within DFT minimize $V[\Psi_{KS}]$ to obtain Ψ_{KS}^{GS} .

$$V\left(\{\mathbf{R}_{l}\}\right) = \min_{\Psi} V\left[\{\Psi_{KS}\}, \{\mathbf{R}_{l}\}\right]$$

2 Compute the forces on the ions from :

$$\mathbf{F}_{I} = -\frac{\partial}{\partial \mathbf{R}_{I}} V \bigg(\{ \mathbf{R}_{I} \} \bigg)$$

3 Move the ions with Newton's equation

Integration with Verlet algorithm to get a trajectory

$$\mathbf{R}_{l}(t+\Delta t)+\mathbf{R}_{l}(t-\Delta t)=2\mathbf{R}_{l}(t)+\frac{\mathbf{F}_{l}}{M_{l}}(\Delta t)^{2}$$

EFFETS D'HISTOIRE THERMIQUE

Quelques données-clé pour 1000 atomes : $D_{min} = \langle R_{min}^2 \rangle / 6t_{max}$

- Pour un $t_{max} \simeq 1000$ ns, on peut espérer obtenir une diffusivité de 2×10^{-14} m².s⁻¹ pour un déplacement carré moyen de 10 Å²
- Avec la loi de Eyring $\eta_{max} = k_B T / \lambda D_{min}$, on peut espérer atteindre ... 3000 Pas.s !!
- Temps de relaxation correspondant $au_{relax} = G_{\infty}/\eta \simeq 100\text{-}1000 \text{ ns avec } G_{\infty}\text{=}3 30 \text{ GPa.}$
- Vitesse de trempe espérée pour $\Delta T \simeq 1000$ K et $t_{max} \simeq 1000$ ns : 10⁹ K/s

EFFETS D'HISTOIRE THERMIQUE

- Effects de taille de système (10⁷) et de refroidissement numérique (10⁸ K/s-10¹⁵ K/s) en MD classique sont bien documentés.
- Propriétés dépendent de l'histoire thermique
- Effects encore plus problématiques en ab initio.
 - N=100-1000 atomes, 100 ps, 10¹³-10¹⁶ K/ps
 - N=480 GeSe₂ vitreux, 350 ps \rightarrow 56 années single CPU !!!

Deng and Du, JCP 148 (2018)

EFFETS D'HISTOIRE THERMIQUE

- Effects de taille de système (10⁷) et de refroidissement numérique (10⁸ K/s-10¹⁵ K/s) en MD classique sont bien documentés.
- Propriétés dépendent de l'histoire thermique
- Effects encore plus problématiques en ab initio.
 - N=100-1000 atomes, 100 ps, 10¹³-10¹⁶ K/ps
 - N=480 GeSe₂ vitreux, 350 ps → 56 années single CPU !!!

Bauchy et al., Chem, Geol, 346 (2013)

EFFETS D'HISTOIRE THERMIQUE

Structures inhérentes

 Les liquides visitent plusieurs configurations avant la trempe à 10-100 K/ps et une relaxation

- Production des quenchs indépendents pour obtenir des structures inhérentes (minima locaux du paysage énergétique)
- Moyenne sur ces structures inhérentes pour obtenir la structure
 "correcte" du verre

M. Micoulaut (SU)

Modélisation des verres

C. Yildirim, PhD Thesis (2017)

ET EN AB INITIO ?

Micoulaut, Pethes and Jóvàri (2022)

Alternatives pour économiser du temps?

- 1 Reverse Monte Carlo
 - Configuration vitreuse preparée par RMC. Puis étude DFT.
 - Les plus : Économie de *t*. Meilleur accord avec structure expérimentale. Les moins : Structure "non-physique" sans effets de relaxation, barrières d'énergie durant la trempe.
 - Affinage RMC: Quench DFT à 300 K \rightarrow RMC \rightarrow étude DFT.
- 2 MD classique avant étude DFT
 - Méthodologie validée pour les silicates. Chalcogénures ?

Structure-propriété de chalcogénures

STRUCTURE ET DYNAMIQUE

Bauchy, Kachmar and Micoulaut, JCP 141 (2014)

1 Ge_xSe_{1-x} , As_xSe_{1-x} or Ge_xS_{1-x}

 Structures vitreuses en excellent accord avec expériences de diffusion (XRD, ND, AXS).

Modélisation des verres

• Présence de défauts homopolaires (Ge-Ge, As-As, Se-Se, S-S).

Structure-propriété de chalcogénures

STRUCTURE ET DYNAMIQUE

Yildirim, Raty and Micoulaut, Nature Comm. 7 (2016)

Bauchy et al. PRL 110 (2013)

Ge_xSe_{1-x}, As_xSe_{1-x} or Ge_xS_{1-x}

- Structures vitreuses en excellent accord avec expériences de diffusion (XRD, ND, AXS).
- Présence de défauts homopolaires (Ge-Ge, As-As, Se-Se, S-S).
- Anomalies dans les propriétés dynamiques

15/22

Structure-propriété de chalcogénures

STRUCTURE ET DYNAMIQUE

Yildirim, Raty and Micoulaut, JCP 148 (2018)

Wezka et al. PRB 90 (2014)

Ge_xSe_{1-x}, As_xSe_{1-x} or Ge_xS_{1-x}

- Structures vitreuses en excellent accord avec expériences de diffusion (XRD, ND, AXS).
- Présence de défauts homopolaires (Ge-Ge, As-As, Se-Se, S-S).
- Anomalies dans les propriétés dynamiques

2 Verres densifiés

- Changement de coordinence et de géométrie sous pression
- Évidence de polyamorphisme

Propriétés spectroscopiques et électroniques

SPECTRE INFRAROUGE

M. Micoulaut et al. PRB 88 (2013)

- Perturbation de l'Hamiltonien : -**M**.**E** with **M** avec le moment dipolaire.
- Théorie de la réponse linéaire :

$$\epsilon_{2}(\omega) = \frac{2\pi}{3 V k_{B} T} \int_{-\infty}^{\infty} e^{-i\omega t} \langle \mathbf{M}(t) . \mathbf{M}(0) \rangle dt$$

• Partie réelle à partir de Kramers-Krönig :

$$\epsilon_1(\omega) = rac{2}{\pi} \int\limits_0^\infty rac{\Omega \epsilon_2(\Omega)}{\Omega^2 - \omega^2} d\Omega$$

7/22

Propriétés spectroscopiques et électroniques

ANALYSE INFRAROUGE DE As₂Se₃

M. Micoulaut and P. Boolchand Front. Mat. 6 (2019)

Les signatures de défauts de coordination peuvent être détectés par l'analyse du spectre IR de As₂Se₃ liquide et vitreux.

Présence d'une vibration défaut at 350-400 cm⁻¹ compatible avec la présence de As en valence 4

M. Micoulaut (SU)

18/22

Properties from the electronic treatment

DENSITÉS D'ÉTATS ÉLECTRONIQUES

- Calcul des états propres de Kohn-Sham la densité d'états électronique du système.
- Comparasion directe avec expériences de photo-émission X (XPS) pour la bande de valence et la bande de conduction.

$$\textit{IPR} = \int d\mathbf{r} |\Psi(\mathbf{r})|^4 \times (\int d\mathbf{r} |\Psi(\mathbf{r})|^2)^{-2})$$

Properties from the electronic treatment

DENSITÉS D'ÉTATS ÉLECTRONIQUES

- Calcul des états propres de Kohn-Sham la densité d'états électronique du système.
- Comparasion directe avec expériences de photo-émission X (XPS) pour la bande de valence et la bande de conduction.
- Détails de la structure atomique (espèces, coordinences, ...) peuvent être utilisés pour comprendre les spectres expérimentaux.

a - Ge₂Sb₂Te₅ axed crystal DOS -13.72 -10.10-2.86 4.38 Energy (eV) Geometry a-GeTe E-E_ (eV)

Prasai and Drabold, PRB 83 (2011)

Micoulaut and Flores-Ruiz (2023)

Conclusion

- La dynamique moléculaire : une méthodologie bien établie pour les liquides surfondus et les verres.
- Accès à de multiples détails de la structure et de la dynamique des systèmes iono-covalents (oxydes modifiés), covalents (chalcogénures) et semi-metalliques.
- Des propriétés additionnelles peuvent être calculées par ab initio (IR, XPS, Raman...) pour établir des liens structure-propriétés-composition.
- Spectres vibrationnels à l'échelle atomique
- Possibilité d'étudier les verres densifiés (polyamorphisme, transitions liquide-liquide,...)

Open Access Journal

- High Quality Papers
- 100 % Cost-Free
- Timely Publication

æ