

MODÈLES PHYSIQUES MINIMAUX & OPTIMISATION POUR L'ÉLABORATION DU VERRE 13/04/2023

Kevin Lippera – David Bousquet Saint-Gobain Research Paris

Défis pour l'élaboration du verre à Saint-Gobain : optimisation des procédés, recherche de design optimal, contrôle optimal

Modèle physique minimal pour le contrôle en temps réel des procédés

Modèle physique minimal pour la recherche de design optimal

Défis pour l'élaboration du verre à Saint-Gobain : optimisation des procédés,

recherche de design optimal, contrôle optimal

Modèle physique minimal pour le contrôle en temps réel des procédés

Modèle physique minimal pour la recherche de design optimal

ELABORATION DU VERRE ISOLATION (LAINE DE VERRE)

SAINT-GOBAIN

MODÈLE PHYSIQUE MINIMAL REAL TIME CONTROL

Objectif: contrôle optimal des inputs de puissance (électrodes, bruleurs) pour garantir une bonne stabilité de la température en entrée du procédé de fibrage !

Problème stationnaire

$\nabla \cdot (\lambda(T) \nabla T) = 0$

Non-linéaire : pas très pratique

Problème stationnaire

$\nabla \cdot (\lambda(T) \nabla T) = 0$

Non-linéaire : pas très pratique

Transformation de Kirchhoff

$$\theta = \mathrm{K}\{T\} = T^* + \frac{1}{\lambda^*} \int_{T^*}^T \lambda(T) dT$$

Changement de variable

Bagnall K et al. (2013). *Application of the Kirchhoff transform to thermal spreading problems with convection boundary conditions.*

Problème stationnaire

 $\nabla \cdot (\lambda(T) \nabla T) = 0$

Non-linéaire : pas très pratique

Transformation de Kirchhoff

$$\theta = K{T} = T^* + \frac{1}{\lambda^*} \int_{T^*}^T \lambda(T) dT$$

Changement de variable

Bagnall K et al. (2013). *Application of the Kirchhoff transform to thermal spreading problems with convection boundary conditions.*

Problème thermique modifié

 $\lambda^* \nabla \theta = \lambda(T) \nabla T$ $\nabla^2 \theta = 0$ Problème de Laplace

$$\phi \in \mathbb{C}^2$$
 θ : Champ de temperature (Kirchhoff)
 $\int_{\Omega} \theta \nabla^2 \phi \, dS = \int_{\delta \Omega} (\phi \nabla \theta - \theta \nabla \phi) \cdot \mathbf{n} \, dS$ Green-O

reen-Ostrogradski

Fonction de Green : $\nabla^2 G_{x_0} = \delta_{x_0}$ Cas 2D diffusif $G_{x_0}(x) = -\frac{1}{2\pi} \log(|x - x_0|)$ $\theta(x_0) = \int_{\delta\Omega} (G_{x_0} \nabla \theta - \theta \nabla G_{x_0}) \cdot \mathbf{n} \, dS$

θ

0

R&D CENTERS

Approche : Utilisation de la Boundary Element Method (BEM) pour calculer le problème thermique

Avantage de la méthode :

- o Plus rapide et nécessite moins de mémoire : réduction de dimension (2D vers 1D)
- o Plus précise que les méthodes traditionnelles pour l'évaluation de quantités physiques aux frontières

Inconvénients

- Ne peut être efficace que pour un nombre de problèmes physiques réduits (pour l'instant...)
- o Difficulté de mise en œuvre par rapport aux méthodes traditionnelles (calculs + code)

R&D CENTE

1.0 0.0

Theory

R&D CENTERS

BY SAINT-GOBAIN

Was done also for Dirichlet, Robin and radiative boundary conditions

0.5

х

BEMETER

0.0

 $-\lambda(T)\frac{dT}{dy} = \phi_1$

SAINT-GOBAIN RESEARCH PARIS

0.5

х

THEORY

- 785

664

· 542

- 421

300

1.0

MODÈLE PHYSIQUE MINIMAL REAL TIME CONTROL

Calcul des pertes thermiques

Boundary Element Method for the Evaluation of Thermal Exchanges in Refractories

Profil de temperature le long du feeder

Modélisation simplifiée des écoulements

MODÈLE PHYSIQUE MINIMAL REAL TIME CONTROL

SAINT-GOBAIN

Cible : température stable pour le procédé de fibrage

+ Temperature cible

Le *modèle physique minimal* permet de prédire raisonnablement la thermique, ce qui permet d'estimer des coefficients PID adaptés

Défis pour l'élaboration du verre à Saint-Gobain : optimisation des procédés,

recherche de design optimal, contrôle optimal

Modèle physique minimal pour le contrôle en temps réel des procédés

Modèle physique minimal pour la recherche de design optimal

ELABORATION DU VERRE PLAT (VITRAGE)

Saint-Gobain Confidential & Proprietary

MODÈLE PHYSIQUE MINIMAL FOR FAST DESIGN EXPLORATION

Outputs industriels Durée de vie du four,

emissions, coût

consomation d'énergie, qualité,

Schéma de principe d'un four de fusion à flamme

Modèle physique

. . .

Données froides

réfractaires, géométrie, position et propriétés des électrodes / bruleurs

Minimisation d'une fonction de coût :

 $\Phi = f(\text{qualité}, \text{énergie}, \text{usure}, \text{coût})$

MODÈLE PHYSIQUE MINIMAL FOR FAST DESIGN EXPLORATION

Outputs industriels

consomation d'énergie, qualité,

Durée de vie du four,

emissions, coût

Schéma de principe d'un four de fusion à flamme

Modèle physique

Données froides

réfractaires, géométrie, position et propriétés des électrodes / bruleurs

Point de fonctionnement Débit de gaz, puissance électrique, tirée

Quelle approche de modélisation physique choisir ?

- Simulation numérique complète (CFD) ?
- Approche Data sciences basée sur de la donnée capteur
- Approche physique minimale

MODÈLE PHYSIQUE MINIMAL FOR FAST DESIGN EXPLORATION

Description physique minimale par bloc, l'ensemble des blocs étant couplés par des équations de conservation de **l'énergie** et de la **masse**.

MODÈLE PHYSIQUE MINIMAL : REDUCED ENERGY DYNAMICS

DERNIER PETIT EXEMPLE : FOUR ELECTRIQUE

CHAMP ELECTR	IQUE
--------------	------

Inputs:

- Puissance électrique •
- Géométrie
- Type de verre et tirée cible ightarrow

Outputs:

- Champ électrique ۲ dans le four
- Distribution des igodolsources thermiques

Méthode & approximations :

- \bullet
- Equation de Laplace $\nabla^2 \psi = 0$ Pas de dépendance locale à la temperature (champ moyen)
- Approximation 2.5D \bullet
- Méthode B.E.M

Inputs:

- Puissance électrique
- Géométrie
- Type de verre et tirée cible

Méthode & approximations :

- Ecoulement de Stokes et convection naturelle "imagée"
- Pas de dépendance locale de la viscosité avec la température (champ moyen)
- Méthode B.E.M

Outputs:

 \bullet

Distribution du

champ de vitesse

CHAMP DE TEMPERATURE

Inputs:

- Recette du verre
- Temperature en dessous de la croûte

Outputs: • Champ de température

Méthode & approximations :

- Diffusion-advection avec sources thermiques
- Pas de dépendance locale de la conductivité thermique avec la temperature
- Méthode aux differences finies

PERTES THERMIQUE AUX NIVEAUX DES REFRACTAIRES

Inputs:

- Empilement réfractaire
- Température extérieure

Outputs:Flux thermiques

Méthode & approximations:

• Méthode B.E.M

MODÈLE PHYSIQUE MINIMAL

SAINT-GOBAI

Conductivité electrique moyenne

ELECTRODES LONGUES

CONCLUSION & PERSPECTIVES

Les modèles physiques minimaux sont en cours de développement à Saint-Gobain recherche en parallèle de simulations numériques complètes, pour fournir aux équipes de design et aux usines de nouveaux outils physiques pour la production

MERCI!

QUESTIONS ?

