

13 avril 2023, Avignon

Phénomènes de transports et d'échanges dans les liquides formateurs de verre

Franck Pigeonneau Mines Paris | PSL Univ. - Centre de Mise en Forme des Matériaux, Sophia Antipolis

Courbe magique

Figure $1 - \log(\eta)$ (Pa · s) vs. T (°C) d'un verre à vitre.

Courbe magique

Figure $1 - \log(\eta)$ (Pa · s) vs. T (°C) d'un verre à vitre.

Courbe magique

Figure 1 – log(η) (Pa · s) vs. T (°C) d'un verre à vitre.

Agenda

1. Thermoconvection dans les fours

- 1.1 Équations de conservation
- 1.2 Étude de cas
- 1.3 Analyse d'échelle
- 1.4 Synthèse

2. Stabilité de films de liquide formateur de verre

- 2.1 Forces interfaciales
- 2.2 Observations expérimentales
- 2.3 Modélisation numérique
- 2.4 Synthèse

PSI 🕅

Figure 2 – Schema d'un four verrier.

PSI 🕅

Figure 2 – Schema d'un four verrier.

1. Thermoconvection dans les fours 1.1 Équations de conservation

Fluide incompressible dilatable :

▶ Variation de ρ avec T conservée dans le bilan de quantité de mouvement¹.

$$\boldsymbol{\nabla} \cdot \mathbf{u} = \mathbf{0},\tag{1}$$

$$\rho \frac{D\mathbf{u}}{Dt} = -\boldsymbol{\nabla}P + \boldsymbol{\nabla} \cdot [2\eta(T)\dot{\boldsymbol{\varepsilon}}] - \rho\beta(T - T_0)\mathbf{g}, \qquad (2)$$

$$\rho C_{p} \frac{DI}{Dt} = \boldsymbol{\nabla} \cdot [\lambda_{eq}(T) \boldsymbol{\nabla} T], \qquad (3)$$

$$\dot{\boldsymbol{\varepsilon}} = \frac{1}{2} \left(\boldsymbol{\nabla} \mathbf{u} + \boldsymbol{\nabla}^t \mathbf{u} \right), \ \lambda_{\text{eq}} = \lambda_{\text{cond}} + \lambda_R. \tag{4}$$

^{1.} J. Boussinesq : Théorie analytique de la chaleur, t. II, 1903.

Figure 3 – Géométrie du four simplifié avec les conditions aux limites cinématique et le profil de T en surface.

Les propriétés physiques :

Table 1 – Propriétés physiques utilisées dans l'étude de cas du four simplifié.

Les conditions aux limites thermique sur les parois :

$$-\lambda_{\mathrm{eq}} \frac{\partial T}{\partial n} = h_p \left(T - T_{\infty} \right), \ h_p = 2.5 \ \mathrm{W/m^2/K}.$$

Figure 4 – η et λ_{eq} vs. T.

Figure 5 – T (K) et $\|\mathbf{u}\|$ (m s⁻¹) dans le plan de symétrie du four.

Figure 5 – T (K) et $\|\mathbf{u}\|$ (m s⁻¹) dans le plan de symétrie du four.

Figure 5 – T (K) et $||\mathbf{u}||$ (m s⁻¹) dans le plan de symétrie du four.

Figure 6 – (a) T (K) et (b) u (m s⁻¹) à la verticale du point chaud pour les 3 β_R .

1. Thermoconvection dans les fours 1.2 Étude de cas

MINES PARIS

PSI 🕅

- > β_R joue un rôle important dans la thermoconvection du bain de verre.
- L'augmentation de β_R induit :
 - Accroissement des gradients thermiques;
 - Réduction des températures de parois inférieures (sole);
 - Réduction de l'intensité de convection.
- β_R influence la durée de vie des fours :
 - > A faible absorption, l'usure est plus rapide car T est plus élevée.
 - L'isolation des fours doit être adaptée en fonction de la teinte du verre.

- > β_R joue un rôle important dans la thermoconvection du bain de verre.
- L'augmentation de β_R induit :
 - Accroissement des gradients thermiques;
 - Réduction des températures de parois inférieures (sole);
 - Réduction de l'intensité de convection.
- β_R influence la durée de vie des fours :
 - A faible absorption, l'usure est plus rapide car T est plus élevée.
 - L'isolation des fours doit être adaptée en fonction de la teinte du verre.

Trouver les paramétres de contrôle des transferts de masse et d'énergie dans les fours verriers

12

1. Thermoconvection dans les fours

1.3 Analyse d'échelle

- Plus long que haut.
- Plus large que haut.
- Chauffage depuis le dessus.

1. Thermoconvection dans les fours

1.3 Analyse d'échelle

- ► Température appliquée sur une frontière horizontale.
- Système fermé.

Figure 7 – Cavité rectangulaire avec les conditions aux limites cinématique et thermique.

1.3 Analyse d'échelle

- Configuration étudiée en géophysique
 - Courants dans les océans dus au soleil².
- Pas de seuil d'écoulement.
- 3 nombres sans dimension :

$$Pr = \frac{\nu}{\kappa}$$
(6a)

$$A = \frac{H}{L}$$
(6b)

$$Ra = \frac{g\beta\Delta TH^{3}}{\nu\kappa}$$
(6c)

1.3 Analyse d'échelle

- Configuration étudiée en géophysique
 - Courants dans les océans dus au soleil².
- Pas de seuil d'écoulement.
- 3 nombres sans dimension :

$$\Pr = \frac{\nu}{\kappa} \sim 100 - 10^3 \tag{6a}$$

$$A = \frac{11}{L} \sim 0.1 - 0.05$$
 (6b)

$$Ra = \frac{g\beta\Delta TH^3}{\nu\kappa} \sim 10^4 - 10^7$$
 (6c)

- Puisque $\Pr \gg 1$, \Pr ne joue aucun rôle :
 - Reste deux nombres sans dimension : A and Ra.

^{2.} Rossby : On thermal convection driven by non-uniform heating from below : an experimental study (cf. note 2).

Figure 8 – Isothermes et lignes de courant dans une cavité avec A = 1/5.

Deux régimes sont observés :

1.3 Analyse d'échelle

1. Thermoconvection dans les fours

- conductif à faible Ra;
- convectif à grand Ra.

PSI 🕅

1. Thermoconvection dans les fours

1.3 Analyse d'échelle

▶ Quel est le paramétre de contrôle lorsque A et Ra changent?

PSI 🕅

16

Quelles sont les lois de transfert dans les deux régimes ?

3. J.-M. Flesselles/F. Pigeonneau : Kinematic regimes of convection at hight Prandtl number in a shallow cavity, in : C. R. Mécanique 332 (2004), p. 783-788.

1. Thermoconvection dans les fours

1.3 Analyse d'échelle

- ▶ Quel est le paramétre de contrôle lorsque A et Ra changent?
- Quelles sont les lois de transfert dans les deux régimes ?
- ► A partir d'une analyse d'échelle, on montre³ :
 - $\operatorname{Ra} A^2$ est l'unique paramétre.

$$\operatorname{Ra} A^{2} = \frac{H^{2}/\kappa}{L/U}, \qquad (7)$$
$$U = \operatorname{Ra} \frac{\kappa}{L}. \qquad (8)$$

PSI 🗑

^{3.} Flesselles/Pigeonneau : Kinematic regimes of convection at hight Prandtl number in a shallow cavity (cf. note 3).

17

1. Thermoconvection dans les fours

1.3 Analyse d'échelle

1. Thermoconvection dans les fours

1.3 Analyse d'échelle

1. Thermoconvection dans les fours 1.4 Synthèse

• Un seul et unique paramétre : $\operatorname{Ra} A^2$.

Deux régimes avec des lois clairement établies.

Les fours verriers sont dans le régime convectif.

La vitesse typique est

$$u_0 \sim \left(\frac{\beta \Delta Tg}{\nu}\right)^{2/5} \kappa^{3/5} L^{1/5}.$$
 (9)

• Puisque $\kappa \sim \beta_R^{-1}$:

Très forte influence de l'absorption infrarouge du verre.

▶ *H* ne joue aucun rôle pour décrire les transferts de masse et de chaleur.

20

2. Stabilité de films de liquide formateur de verre 2.1 Forces interfaciales

Figure 11 – Volume de contrôle comprenant 2 phases, $\Omega_1(t)$ et $\Omega_2(t)$ coupés par une interface $\Gamma(t)$.

$$(\boldsymbol{\sigma}_2 - \boldsymbol{\sigma}_1) \cdot \mathbf{n} = \gamma \boldsymbol{\nabla}_{\mathcal{S}} \cdot \mathbf{nn} - (\mathbf{I} - \mathbf{n} \otimes \mathbf{n}) \cdot \boldsymbol{\nabla}_{\mathcal{S}} \gamma.$$
(10)

2. Stabilité de films de liquide formateur de verre

2.2 Observations expérimentales

Figure 12 - Montage pour créer des films de liquide formateur de verre.

SiO_2	Na_2O	CaO	K_2O	MgO	AI_2O_3
72.1	13.3	9	0.1	3.6	0.8

Table 2 – Composition du verre (wt%).

22

2. Stabilité de films de liquide formateur de verre

2.2 Observations expérimentales

Drainage of a vertical film

made of molten glass

Temperature of the furnace = 1300°C

total time of the movie in real time is 14 minutes

F. Pigeonneau, H. Kocarkova, F. Rouyer, http://dx.doi.org/10.1016/j.colsurfa.2012.04.014

2. Stabilité de films de liquide formateur de verre

2.2 Observations expérimentales

MINICC DADE

24

2. Stabilité de films de liquide formateur de verre

2.2 Observations expérimentales

- Normalisation du temps de vie.
- Pour les interfaces non cisaillées :
 - écoulement élongationnel.
- Gravité équilibre les forces de visqueuses élongationnelles :

$$t_{\eta} = \frac{\nu}{gL}.$$
 (11)

 $T^{1200}(^{\circ}C)$

26

2. Stabilité de films de liquide formateur de verre

2.2 Observations expérimentales

- Stabilisation thermiquement activée.
- Collection d'échantillons après 3 ou 4 minutes de drainage pour obtenir les compositions chimiques.

Figure 15 – Principe du SIMS.

2. Stabilité de films de liquide formateur de verre

27

MINEC DADE

PSI 🕅

2. Stabilité de films de liquide formateur de verre 2.3 Modélisation numérique

La tension de surface est déterminée en utilisant le principe d'additivité⁴ :

$$\gamma = \sum_{i=1}^{N} \gamma_i y_i, \text{ avec } y_i = \frac{\rho_i}{\rho}.$$
 (12)

Détermination de la concentration de Na₂O vs. h et de l'épaisseur d'évaporation de Na₂O, δ⁵:

$$\rho_{\text{Na}_2\text{O}} = \frac{\rho_{\text{Na}_2\text{O},0}}{1 + \frac{2\delta}{h}}.$$
(13)

H. Scholze : Glass. Nature, Structures and Properties, Berlin 1990.
 F. Pigeonneau/H. Kočárková/F. Rouyer : Stability of vertical films of molten glass due to evaporation, in : Colloids Surf., A 408 (2012), p. 8-16.

MINES PARIS | PSL 29

2. Stabilité de films de liquide formateur de verre

2.3 Modélisation numérique

$$\gamma = \gamma_0 + \delta \gamma f_{\gamma}(h). \tag{14}$$

$$\delta \gamma = \left(\gamma_{\rm SiO_2} \frac{y_{\rm SiO_2,0}}{y_{\rm SiO_2,0} + y_{\rm CaO,0}} + \gamma_{\rm CaO} \frac{y_{\rm CaO,0}}{y_{\rm SiO_2,0} + y_{\rm CaO,0}} - \gamma_{\rm Na_2O}\right) y_{\rm Na_2O,0},$$
(15)
$$f_{\gamma}(h) = \frac{1}{1 + \frac{h}{2\delta}}.$$
(16)

 $\blacktriangleright \ \delta\gamma \approx 4.2 \times 10^{-2} \, \mathrm{N} \, \mathrm{m}^{-1}.$

Si $\delta/h \approx 0.2$, la variation de γ est de 0,5 %.

30

2. Stabilité de films de liquide formateur de verre

2.3 Modélisation numérique

• Développement d'un modèle de lubrification tenant compte de la variation de γ .

2. Stabilité de films de liquide formateur de verre 2.3 Modélisation numérique

Problème normalisé :

$$\overline{x} = \frac{x}{L}, \ \overline{h} = \frac{h}{H_0}, \ \overline{u} = \frac{u}{U_0}, \ \overline{t} = \frac{tU_0}{L}, \ \text{avec} \ U_0 = \frac{\rho g L^2}{\eta}, \qquad (17)$$
$$\frac{\partial \overline{h}}{\partial \overline{t}} + \frac{\partial (\overline{h}\overline{u})}{\partial \overline{x}} = 0, \qquad (18)$$

$$\operatorname{Re}\overline{h}\left(\frac{\partial\overline{u}}{\partial\overline{t}}+\overline{u}\overline{u}_{,\overline{x}}\right)=4\frac{\partial(\overline{h}\overline{u}_{,\overline{x}})}{\partial\overline{x}}+\frac{\overline{\gamma}\overline{h}\overline{h}_{,\overline{x}\overline{x}\overline{x}}}{2\operatorname{Bo}}+\operatorname{Ma}\frac{df_{\overline{\gamma}}}{d\overline{h}}\overline{h}_{,\overline{x}}+\overline{h}.$$
(19)

$$\operatorname{Re} = \frac{\rho U_0 L}{\eta}, \ \operatorname{Bo} = \frac{\rho g L^3}{\gamma_0 H_0}, \ \operatorname{Ma} = \frac{\delta \gamma}{\eta U_0}, \ \overline{\delta} = \frac{\delta}{H_0}.$$
 (20)

2.3 Modélisation numérique 10 $= 10^{-4}$ $\rightarrow \delta = 10^{-3}$ 10^{-1} $(\underline{u})^{-2}$ 10 10⁻⁴ 50 100 150 250 300 200 350

Figure 17 – min(\overline{h}) vs. \overline{t} et 5 valeurs de $\overline{\delta}$.

2. Stabilité de films de liquide formateur de verre

2.3 Modélisation numérique 0.01 -10^{-6} $-\delta = 10^{-1}$ $\stackrel{\underline{\delta}}{\longleftrightarrow} = 10^{-4}$ 0.008 0.006 $\frac{1}{2}$ 0.004 0.002 0 0.2 0.8 Ϋ́ 0.4 0.6 \overline{x}

Figure 18 – \overline{h} vs. \overline{x} et 5 valeurs de $\overline{\delta}$.

2. Stabilité de films de liquide formateur de verre

PSI 🕅

MINEC DADE

2. Stabilité de films de liquide formateur de verre

2.3 Modélisation numérique

MINEC DADE

2. Stabilité de films de liquide formateur de verre 2.4 Synthesis

- La stabilité de films verticaux semble due à l'évaporation Na₂O;
- Physiquement analogue à l'évaporation de l'alcool des solutions aqueuses :

Source : wikipedia : Larmes de vin.

• Une variation de 0,5 % de γ suffit pour stabiliser les films.

PSI 🕅

Ecole thématique CNRS Surfaces & Interfaces du 36 Verre

La Vieille Perrotine, Île d'Oléron, 16 au 20 octobre 2023

https://surface-verre.sciencesconf.org/

PSI 🕅

37

Merci de votre attention !

Contact : franck.pigeonneau@minesparis.psl.eu

