

Lire la mémoire du verre

Dominique de Ligny

Universität Erlangen-Nürnberg, Lehrstuhl für Glas und Keramik, Erlangen, Germany

21. Septembre 2022, Nice

- D'où vient la mémoire du verre
- Comment peut on la lire
- Aérosol déposition
- Vitesse de refroidissement autour de zone modifiée par laser à pulsions courte

- D'où vient la mémoire du verre
- Comment peut on la lire
- Aérosol déposition
- Vitesse de refroidissement autour de zone modifiée par laser à pulsions courte

Effet de la température

Refroidissement à différentes vitesses

Chauffage à différentes vitesses

La vitesse de refroidissement dans la zone de transition vitreuse est enregistrée.

La température fictive représente la température de transition vitreuse pour une vitesse de refroidissement donnée.

Effet de la pression Densification Volume **Pression Maximale** 25 ♦ Soda-Lime-Silica Window Glass-Ji et al. (2006) SiO₂ Density change, $\Delta \rho / \rho_{\circ}$ (%) ▲ SiO2-Bridgman et al. (1953) 20 △ SiO2-Christiansen et al. (1962) B2O3-Bridgman et al. (1953) O FBaEuZr-Miyauchi et al. (1999) 15 × SiO2 present data Δ GeSe4 Present data Pression 10 Window Glass ᠵ 5 F57Ba15Eu5Zr Zr55Cu30Al10Ni5 La pression maximale est enregistrée 20 10 30 O Hydrostatic pressure, P (GPa) .ehrstuhl

Glas und Keramik

- D'où vient la mémoire du verre
- Comment peut on la lire
- Aérosol déposition
- Vitesse de refroidissement autour de zone modifiée par laser à pulsions courte

Lire la mémoire du verre

Différents instruments

Methode	Taille observée	Forme	Calibration
DSC Calorimétrie	mm	Poudre	pas
Volume	mm	Régulière	pas
Indice de réfraction	100 µm	Régulière	Coef. photoélastique
Densité	cm	Complexe	pas
Raman	1 µm	Complexe	Spécifique
Brillouin	1 µm	Complexe	Spécifique
Luminescence	1 µm	Complexe	Spécifique

Spectroscopie vibrationelle

Spectroscopie Brillouin

Le signal Brillouin montre une évolution progressive avec une pression maximale. Pas tout à fait proportionnel à la compression.

Luminescence des Terres Rares

La luminescence est proportionnelle à la densité, soit par compression, soit par contrainte résiduelle.

- D'où vient la mémoire du verre
- Comment peut on la lire
- Aérosol déposition
- Vitesse de refroidissement autour de zone modifiée par laser à pulsions courte

Aérosol déposition

Cicconi et al. JACS 2019

Aérosol déposition

- D'où vient la mémoire du verre
- Comment peut on la lire
- Aérosol déposition
- Vitesse de refroidissement autour de zone modifiée par laser à pulsions courte

Modifications de SiO₂ avec laser picosecond

Nd:YVO4-laser, 10 ps, 1064 nm, 2MHz, 3W

Précise calibration du Raman avec la vitesse de refroidissement

Utilisation de la calibration Raman

Utilisation de la calibration Brillouin

Comparaison entre Raman et Brillouin

$$RS (GPa) = \frac{BR (GHz) - 0.0173 \left(\frac{GHz}{cm^{-1}}\right) \cdot \sigma (cm^{-1}) - 28.6 (GHz)}{-2.5 \left(\frac{GHz}{GPa}\right)}$$

Possibilité de déterminer les contraintes residuelles dans la zone modifiée

Croiser les informations

Modification laser stationnaire

Utilisation du changement local de l'indice de refraction pour remonter à la vitesse de refroidissement

Conclusion

- Le verre a une mémoire
- Cette mémoire peut être lue en utilisant les spectroscopies de vibrations et de luminescence
- Elle est sensible à beaucoup de paramètres: vitesse, pression max, contrainte, cisaillement
- Elle peut aussi s'effacée totalement ou partiellement

Rita Cicconi, Neamul Khansur, Udo Eckstein, Kyle Webber

Michael Bergler, Kristian Cvecek, Michael Schmidt

