

Matériaux photosensibles et structuration par laser femtoseconde

J. C. Desmoulin, S. Danto, P. Hee, A. fargues, Y. Petit, E. Fargin, <u>T. Cardinal</u> ICMCB, University Bordeaux, France

> M. Vangheluwe, L. Canioni CELIA, University Bordeaux, France

F. Liang, Y. Messaddeq, R. Vallée *COPL, University Laval, Canada*

M. Dussauze ISM, University Bordeaux, France

thierry.cardinal@icmcb.cnrs.fr

GDR - Nice - 2015

- I. Introduction Structuration Laser femtoseconde et impression 3D
- II. Verres photosensibles : le cas de l'ion argent
- III. Impression de motifs luminescents
- IV. Processus physico-chimiques : analogie avec une irradiation électronique
- V. Effets non linéaires photo-induits
- **VI.** Architecture et co-illumination
- VII. Mise en forme : fibres photosensibles
- VIII.Verres à l'argent et nanoréseaux

Impression en surface et en volume

icmcb

Absorption linéaire / non linéaire

Lasers impulsionnels

 $P_c \approx GW - TW$

Fluorescence de colorants en solution

Processus non linéaire = multiphoton Absorption localisée

Processus linéaire : Absorption sur tout le trajet du faisceau

Laser Femtoseconde Structuration des verres

1995

📑 icmcb

• Micromètre

Inscription de guide d'onde Croissance cristalline

Efimov et al, Optical Materials, Volume 17, Issue 3, August 2001, Pages 379-386

Depuis 2000Nanostructuration Nano Réseaux

Shimotsuma Y., Hirao K. et al. J. of Non Cryst. Solids, 352, p646, (2006)

capteur

P. G. Kazansky et al. 90, (2007), p151120

Translume Inc.

Processus physico - chimiques

DLW: Repetition rate

Thermal relaxation $\approx \mu s$

Low repetition rate

High repetition rate

 \Rightarrow Effet thermique

Régime d'inscription

SiO₂

 $\rightarrow \Delta n$ isotrope – fusion du verre. \rightarrow Applications: guides d'onde....

icmet

- Type 2: Variation anisotrope de l'indice de réfraction
- → Modification de l'indice de réfraction à des échelles en dessous de la longueur d'onde ("nanograting" structure).
- \rightarrow Applications: **polarisation....**

• Type 3: Formation de cavités

- \rightarrow Coeur de faible densité($\Delta n < 0$) et coque forte densité($\Delta n > 0$).
- \rightarrow Applications: **mémoires optiques...**

Régime d'inscription

I. Introduction Structuration Laser femtoseconde et impression 3D

- II. Verres photosensibles : le cas de l'ion argent
- III. Impression de motifs luminescents
- IV. Processus physico-chimiques : analogie avec une irradiation électronique
- V. Effets non linéaires photo-induits
- **VI.** Architecture et co-illumination
- VII. Mise en forme : fibres photosensibles
- VIII.Verres à l'argent et nanoréseaux

Eléments photosensibles ?

📑 icmcb

Argent, un élément très utilisé?

Film photographique

📑 icmcb

Doisneau, Mathématiques, 1941

Verre photosensible

Stookey, Ind. Eng. Chem., 1949

Thermo photo réfractif

Optical Materials 32 (2009) 139–146

DLW: Oxydo-Réduction de l'argent

cmcb

- I. Introduction Structuration Laser femtoseconde et impression 3D
- II. Verres photosensibles : le cas de l'ion argent
- III. Impression de motifs luminescents
- IV. Processus physico-chimiques : analogie avec une irradiation électronique
- V. Effets non linéaires photo-induits
- **VI.** Architecture et co-illumination
- VII. Mise en forme : fibres photosensibles
- VIII.Verres à l'argent et nanoréseaux

DLW: Matrice d'interaction Laser Matériaux

Wavelength:	I.04 μm
Energy :	0→400 nJ
Pulse width :	400 fs
Repetition rate:	10 Mhz

icmcb

DLW: Spectroscopie corrélative

Microscopie en lumière blanche

Tg= 380°C

Microscopie de luminescence Micro Raman Microspectroscopie SHG etc...

D

DLW: Fluorescence

- 10⁶ 10⁵ 10⁴ 10³ 10² 9 10 11 12 13 14 Irradiance (TW.cm⁻²)
- Energie (eV) 2,5 2 1.0 $N = 10^{5}$ Intensité de fluorescence normalisée I = 11 TW.cm⁻² 0.8 0.6 0.4 0.2 0.0 500 700 450 550 600 650 Longueur d'onde (nm)
 - Bellec et al. Journal of Physical Chemistry C 114, (2010), 15584-15588.

- Fomation de clusters d'argent fluorescents Ag_m^{x+}.
- Réactions Photo-chimiques:

Matrice +
$$hv \rightarrow e^{-} + h^{+}$$

 $Ag^{+} + hv \rightarrow e^{-} + Ag^{2+}$
 $Ag^{+} + e^{-} \rightarrow Ag^{0}$
 $Ag^{+} + Ag^{0} \rightarrow Ag_{2}^{+}$
 $Ag_{2}^{+} + Ag^{+} \rightarrow Ag_{3}^{2+} \dots Ag_{m}^{*+}$

📑 icmcb

DLW: Fluorescence

L. Binet, D. Caurant, , LCMC, Paris

Photo réduction et agrégation

icmcb

Micro Analyse Chimique

Formation de clusters d'argent luminescents Ag_m^{x+} (formés de Ag⁰ et Ag⁺)

Bellec & al., Opt. Express, 17(12) (2009) 10304-10318

X Ray microprobe

icmeb

JC Desmoulin et al., J. App Phys. In press

19

D

📑 icmcb

DLW: Laser Writing

Bord écrit Centre efface

Inscription de doubles lignes fluorescentes

icmcb

Combinaison de l'oxydo-réduction Et de la migration

2

Linear displacement $v = 1 \text{ mm/s}, N = 10^{6}$

icmeb

Motifs luminescents

• Stockage pérenne 3D haute densité (lecture confocale)

• Ecriture & ré-inscription

- Ecriture sur les bords du laser
- Effacement au centre
- Re-écriture selon le réservoir d'ions argent

A. Royon et al., Advanced Materials, 22, 46, 2010, p 5282

Matériaux orientés

📲 icmcb

→ Double-line spirals by confocal imaging

→ Control of both radii
 & helicoidal periods

→ Sub-micron dimensions along the spiral

N. Marquestaut et al., Avd. Funct. Mat. **24**(37), 5824–5832 (2014).

Topological chirality

- \rightarrow Photonics structures
 - Linear optics & Refractive index
 - Nonlinear optics & SHG / THG

\rightarrow Plasmonics structures

- Composite dielectric/metallic materials
- Spirals of disconnected silver NPs

- I. Introduction Structuration Laser femtoseconde et impression 3D
- II. Verres photosensibles : le cas de l'ion argent
- III. Impression de motifs luminescents
- IV. Processus physico-chimiques : analogie avec une irradiation électronique
- V. Effets non linéaires photo-induits
- **VI.** Architecture et co-illumination
- **VII.** Mise en forme : fibres photosensibles
- VIII.Verres à l'argent et nanoréseaux

DLW: Luminescence et absorption

GDR - Nice - 2015

📑 icmcb

Identification des mécanismes physico-chimiques

N. Ollier, LSI, Paris

Irradiation électronique (1MGy) de verres phosphate d'argent pour différentes concentrations en argent

Verre sans Argent :

Formation de POHC

Verre avec Argent :

- Disparition des POHC
- Capture des trous et des électrons par <u>l'argent</u>

Identification des mécanismes physico-chimiques

Deux sites pour l'argent

Identification des mécanismes physico-chimiques

📲 iemeb

Sodium / Argent

📲 icmcb

GDR - Nice - 2015

- I. Introduction Structuration Laser femtoseconde et impression 3D
- II. Verres photosensibles : le cas de l'ion argent
- III. Impression de motifs luminescents
- IV. Processus physico-chimiques : analogie avec une irradiation électronique
- V. Effets non linéaires photo-induits
- **VI.** Architecture et co-illumination

VII. Mise en forme : fibres photosensibles

VIII.Verres à l'argent et nanoréseaux

DLW: Second Harmonic Generation

DLW: Electric field

DLW: Steps

- I. Introduction Structuration Laser femtoseconde et impression 3D
- II. Verres photosensibles : le cas de l'ion argent
- III. Impression de motifs luminescents
- IV. Processus physico-chimiques : analogie avec une irradiation électronique
- V. Effets non linéaires photo-induits
- **VI.** Architecture et co-illumination
- VII. Mise en forme : fibres photosensibles
- VIII.Verres à l'argent et nanoréseaux

DLW: Thermal treatment above Tg after DLW in zinc phosphate matrix

N. Marquestaut, Adv. Funct. Mater., 24, 37, 2014, Pages: 5824–5832

icmcb

Des clusters spécifiques pour la formation de nanoparticules métalliques

T = 425°C

📲 iemeb

Co-illumination & inhibition

up to **100% inhibition** of the DLW fluorescence by cw blue **co-illumination**

Active feedback control on silver cluster creation efficiency

Y. Petit et al., Opt. Lett., 40, 17, p 4134, 2015.

icmcb

Co-illumination versus post-illumination

icmcb

DLW: Vortex-induced linear patterns

LOMA, Univ. Bordeaux

• Light structuring

• Photo-induced generation of original fluorescents patterns

• Realization of patterns *a priori* non accessible by successive irradiations with a Gaussian beam

• Conditions of laser writing with different laser parameters

K. Mishchik et al., Optics Letters, 40, 2, p201, 2015.

DLW: Lumière structurée

LOMA, Univ. Bordeaux

📑 icmcb

DLW: Lumière structurée

LOMA, Univ. Bordeaux

Nonlinear patterns under translation

- NA=0.9 ∆l=450nm **∆l=220nn** ~2/2 ~2/4 E_p=94 nJ v=40µm/s 2 µm b) a) 300 FLUORESCENCE INTENSITY [arb. units] Fluo (green)+ SHG INTENSITY [arb. units] 250 **EFISHG (red)** 200 150 100 2 µm 3 2 d) c) DISTANCE [µm]
 - Correlative microscopy fluo/SHG
 multi-functionalized
 materials
 - Sub-wavelength micro-processing
 - Buried electric field engineering
 - Parallelizing of single-beam multiline DLW
 - Towards new electro-optics photonic devices

- I. Introduction Structuration Laser femtoseconde et impression 3D
- II. Verres photosensibles : le cas de l'ion argent
- III. Impression de motifs luminescents
- IV. Processus physico-chimiques : analogie avec une irradiation électronique
- V. Effets non linéaires photo-induits
- **VI.** Architecture et co-illumination

VII. Mise en forme : fibres photosensibles

VIII.Verres à l'argent et nanoréseaux

Photosensitive glass and fiber technology

Frédéric Smektala, ICB, Dijon

DLW:

Preform

Fiber

- P₂O₅-ZnO-Ga₂O₃- 2%Na₂O-2%Ag₂O
- Draw at $T_d \sim 700$ °C under oxidizing condition (O₂)
- α~1.60 dB.m⁻¹ @ 1064 nm

Ag-doped phosphate-based glass (preform, capillaries and fiber) under UV light (λ_{exc} =254 nm)

Fluorescence emission properties of the glass bulk is **Preserved into fiber form**

📑 icmcb

DLW: Photosensitive glass and fiber technology

Frédéric Smektala, ICB, Dijon

GDR - Nice - 2015

📑 icmcb

- I. Introduction Structuration Laser femtoseconde et impression 3D
- II. Verres photosensibles : le cas de l'ion argent
- III. Impression de motifs luminescents
- IV. Processus physico-chimiques : analogie avec une irradiation électronique
- V. Effets non linéaires photo-induits
- **VI.** Architecture et co-illumination
- **VII.** Mise en forme : fibres photosensibles
- VIII.Verres à l'argent et nanoréseaux

DLW: Gallium Phosphate glass 20% Ga₂O₃ – 80% NaPO₃

P. Hee, Journal of Materials Chemistry, 2, 37, p7906, 2014
 M. Vangheluwe, Optics Letters, 19, p 5491-5494, 2014

DLW: Gallium Phosphate glass 20% Ga₂O₃ – 80% NaPO₃

GDR - Nice - 2015

ticmcb

DLW: Gallium Phosphate glass 20% Ga₂O₃ – 80% NaPO₃

COPL, Univ. Laval

The silver play a role in the electron and hole generation and trapping processes

icmcb

GPN-Ag

Nano-gratings quality improvement with silver

📲 icmcb

Perspectives

Verres d'oxydes lourds

COPL, Univ. Laval

Z = 60µm

 $Z = 140 \mu m$

Z = 220μm

Z = 300µm

<u>Fig 3. Darkfield images of irradiated zones</u> a) <u>10x</u> b) <u>40x - imaging of lines irradiated @ z=220 μm</u>

Conclusion

Verres photosensibles

- Photochimie et oxydo-réduction
- > Processus de diffusion, effet des alcalins
- Structuration et impression Laser
 - ✓ Formation de clusters Ag_m^{x+}
 - ✓ Luminescence
 - ✓ Propriétés optiques Non Linéaires
 - ✓ Formation localisée de particules métalliques

Remerciements

F. Désévédavy, F. Smektala ICB, Université de Bourgogne, Dijon, France

E. Brasselet LOMA, Université Bordeaux, France

K. Richardson, M. Richardson CREOL, University of Central Florida, USA.

V. Rodriguez, D. Talaga I.S.M., Université Bordeaux.

A. Piarristeguy, A. Pradel ICGM, Université Montpellier, Montpellier, France

GDR - Nice - 2015

Merci pour votre attention

Thierry Cardinal Group; Corcoran,

E. Fargin, J.-C. Desmoulin, P. Hée, S. Thomas, A.

A. Fargues, S. Danto, B.

de **BORDEAUX**

S. Gouin.

UNIVERSITÉ

AVAL

Glorieux, A. Garcia, V. Jubera

Lionel Canioni group: K. Mishchik, N. Marquestaut, M. Vangheluwe, E.-J. Lee, LAPHIA Collaborative project A.Abou Khalil, N.Varkentina, J. Lopez, I. Manek-Hönninge h.B. RouAcutev& P. Mounaix

Vincent Rodriguez group: M. Dussauze, F.Adamietz,

F. Talaga & F. Bondu LAPHIA Risky project « MOBILE »

Etienne Brasselet & H. Magallanes

Guillaume Duchateau, B. Chimier & Y. Smetanina

d Royon, K. Bourhis & G. Papon COPL Centre d'optique, photonique et lase

→ LAPHIA Risky project % STEDn'STRUCT » (2013) Prof.Y. Messaddeq & Y. Ledemi

Many thanks to colleagues, agencies & for your attention

SHG and Luminescence

