

Mécanisme et cinétique de lixiviation des bioverres: Applications en tant que Biomatériaux en sites osseux

Hassane Oudadesse

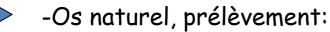
hassane.oudadesse@univ-rennes1.fr

Groupe Biomatériaux en site osseux:

Hassane Oudadesse, Guy Cathelineau, Anita Lucas-Girot, Pascal Pellen, Sylvie Jeanne, Dominiqe Chauvel-Lebret, Laurence Buntel

> Université de Rennes 1 ISCR UMR CNRS 6226

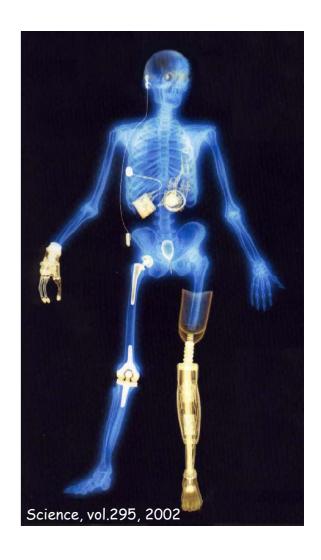
- 1. Biomatériaux
- 2. Synthèse des biomatériaux: Verre pur, Verres dopés
- 3. Expérimentations "in vitro" en l'absence de cellules
- 4. Echanges ioniques Verres SBF
 - Verre pur
 - Verre dopé Mg, Zn, Sr
- 5. Application: Expérimentation « in vivo »
 - Verre pur
 - Verre Chitosan


6. Conclusion

Biomatériaux

Matériaux non-vivants utilisés dans un dispositif médical et destinés à interagir avec des systèmes biologiques.

Biomatériaux naturels:



*sur l'individu lui même

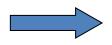
*sur individu génétiquement compatible

- Os bovin (Lubboc, Laddec)

- Corai

Biomatériaux synthétiques:

- Céramiques phosphocalciques:


HA ($Ca_{10}(PO_4)_6(OH)_2$), TCP, Composite HA/TCP

- Carbonate de calcium CaCO₃ sous forme d'aragonite

- Composites géopolymères (aluminosilicates) - phosphate de calcium

- Verres bioactifs

Biocompatibilité

Bioconsolidation: Interface tissus osseux -implant

Cinétique d'ossification

Biomatériaux: fonctionnels, inertes, bioactifs, resorbables

Biomatériaux en site osseux

Applications visées : restauration, comblement, substitution de tissus osseux endommagés

Matériaux : verres purs ou dopés, denses ou poreux ; SiO₂-CaO-Na₂O-P₂O₅

Deux axes de recherche

Cinétique de bioactivité:

- *Contrôle et adaptation de la cinétique de bioactivité des verres aux métabolismes osseux des patients selon: site à restaurer, âge, sexe.....
- *Compositions chimiques. Dopage avec des éléments chimiques: Mg, Zn, Sr
- *Mode de synthèse: fusion ou sol-gel
- *Induction de porosité

Associations verres – biomolécules:

*Elaboration de matériaux ostéoinducteurs:

verre + Biopolymère: Chitosan

*Traitement de pathologie ostéoporose:

verre + Chitosan

verre + Bisphosphonate: Zolédronate, Clodronate

verre + Médicament: Gentamicine, Protéines

Moyens mis en œuvre

- Evaluations biologiques:

Biocompatibilité, comportement des cellules (cytotoxicité, prolifération, adhésion) *in vitro* et *in vivo* Histologie et histomorphométrie

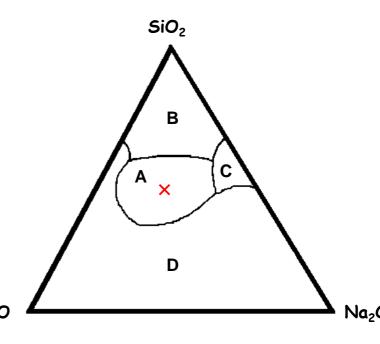
- Etudes des propriétés physico-chimiques:

Structure (RX, RMN, IR),

Texture: morphologie, surface spécifique (BET), taille des pores (BJH, MEB, MET)

- * Etudes des cinétiques des échanges ioniques avec milieu environnant (eau, SBF, ...)
- * Cinétique d'ossification et de bioconsolidation. Interface os/implant (NAA, PIXE)

Composition chimique


• 4656 : composition de référence

% mass.	SiO ₂	CaO	Na ₂ O	P ₂ O ₅
4656	46	24	24	6

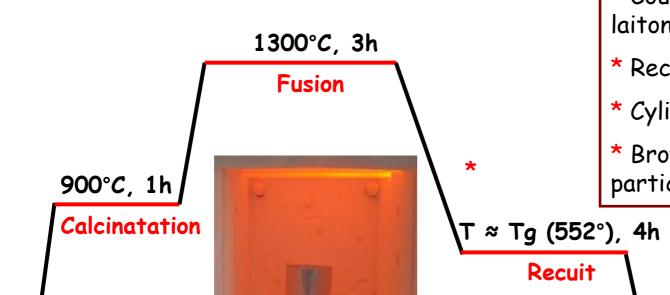
Diagramme ternaire avec 6 % en masse de P_2O_5

Eléments dopants

Sélections de trois éléments

Magnésium
Zinc
Strontium

- Propriétés physiologiques intéressantes
- Teneurs moyennes dans les tissus osseux
 - $Mg: 0,4 \le X \le 1,2 \%$ en masse
 - $Zn: 0.02 \le Y \le 0.1\%$ en masse
 - $Sr: 0.02 \le Z \le 0.1\%$ en masse


Synthèse du verre bioactif 4656

% massique	SiO ₂	CaO	Na ₂ O	P ₂ O ₅
4656	46	24	24	6

Mélange initial:

CaSiO₃, Na₂SiO₃ et

NaPO₃

- Préparation du mélange de poudres
- * Calcination, puis fusion
- * Coulée dans des moules en laiton préchauffés 500°C
- * Recuit pendant 4h à $T \approx T_g$
- * Cylindres
- * Broyage pour obtenir des particules inférieurs à 40 μ m

Verres massifs

Préparation des échantillons

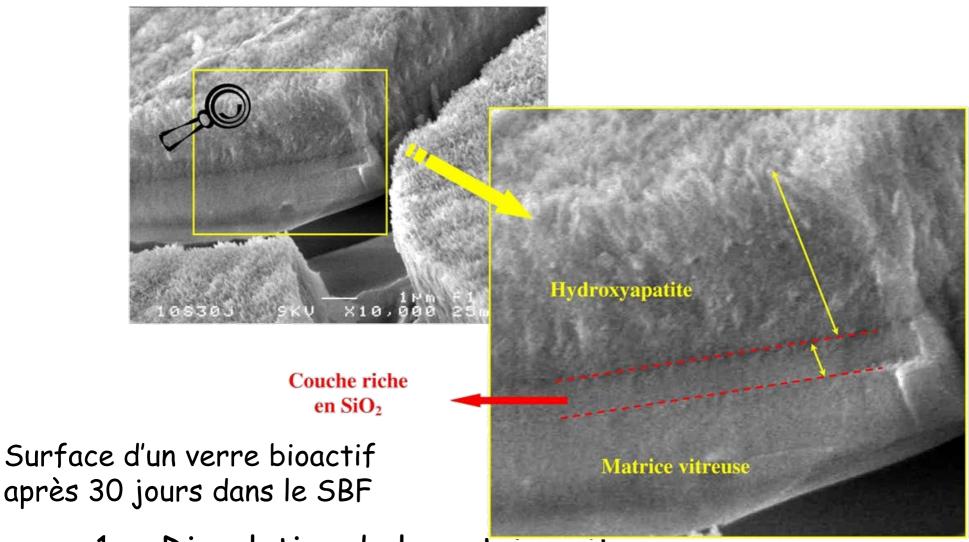
- * Cylindres de : 13 mm de diamètre et 8 mm de hauteur.
- * les cylindres de verre sont enrobés dans de la résine organique.
- * Après 24 heures (temps de polymérisation de la résine), l'échantillon est poli en milieu humide, afin que seule une face du verre bioactif soit en contact avec le SBF
- * De cette manière: la surface de contact à l'interface verre bioactif SBF est identique pour tous les échantillons.
- * Le polissage au papier de carbure de silicium (jusqu'au grain 2400) permet également d'éliminer la couche de surface qui peut avoir été polluée pendant la découpe et la manipulation des cylindres.

Expérimentations "in vitro"

Mise en évidence de la bioactivité des verres lors de tests in vitro

	Concentrations ioniques 10 ⁻³ mol.L ⁻¹						
	Na⁺	K ⁺	Ca ²⁺	Mg ²⁺	Cl-	HCO ₃ -	HPO ₄ ²⁻
SBF	142,0	5,0	2,5	1,5	148,8	4,2	1,0
Plasma sanguin	142,0	5,0	2,5	1,5	103,0	27,0	1,0

- Synthèse du SBF (Simulated Body Fluid)
- -Immersion dans 8 ml de SBF des cylindres enrobés de verre pur et des verres dopés avec du Mg, Zn et Sr
- Echantillons maintenus à 37° sous agitation contrôlée (50 tours/min)
- -Délais d'immersion: 1, 3, 7, 15 et 30 jours.



Incubateur

Evaluations « in vitro »: Physicochimie - Biologie

Processus de bioactivité

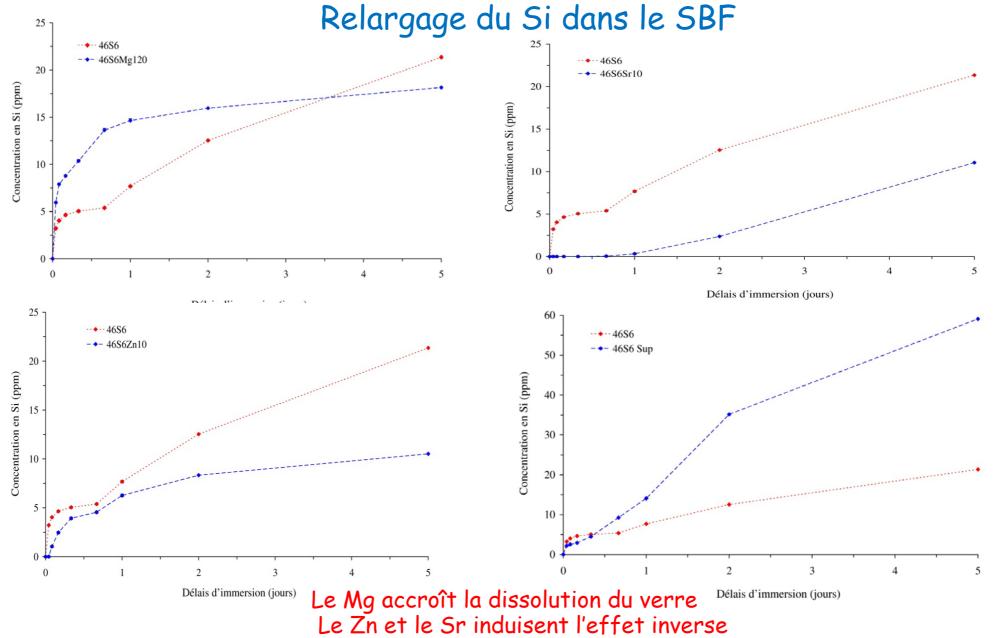
- 1. Dissolution de la matrice vitreuse
- 2. Formation d'un gel vitreux de silice
- 3. Précipitation de la couche d'hydroxyapatite

Verres bioactifs

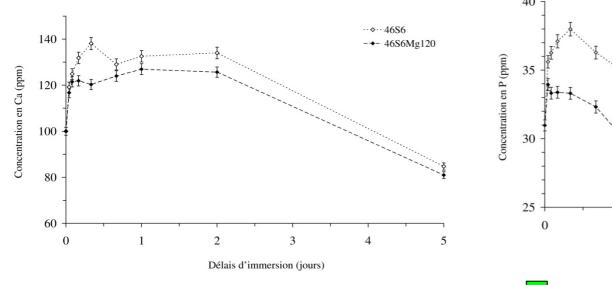
Système: SiO_2 - Na_2O - CaO - P_2O_5

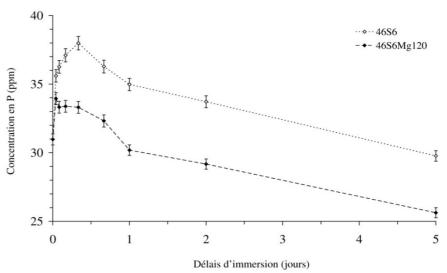
Bioactivité: Interactions verre-Liquide SBF Formation d'une couche d'hydroxyapatite (HA), Cinétique selon la composition chimique du verre

 $Ca_{10}(PO_4)_6(OH)_2$: après contact avec un liqude physiologique



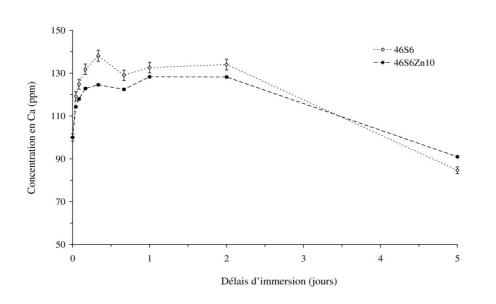
Hydroxyapatite similaire à la phase minérale de l'os

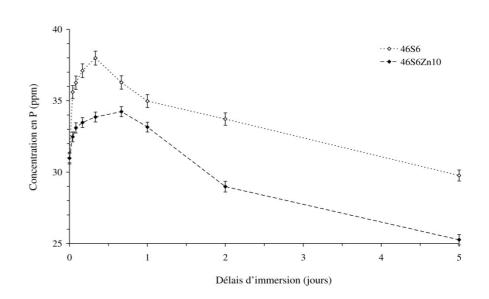

Formation des liaisons chimiques entre l'implant et l'os naturel


Cinétique de Bioactivité: coportement des 3 éléments Si, Ca et P

- E. Dietrich, H. Oudadesse, A.Lucas-Girot, M. Mami. J. Biomed. Mat. Res. Part A, 88A: 1087-1096, 2009
- F. Z. Mezahi, A. Lucas-Girot, H. Oudadesse, A. Harabi J. Non-Cryst. Sol., 361:111-118, 2013
- N. Letaïef et al., J. Non-Cryst. Sol., to be published

Relargage du Ca et du P dans le SBF: Verre pur et verre dopé au Mg

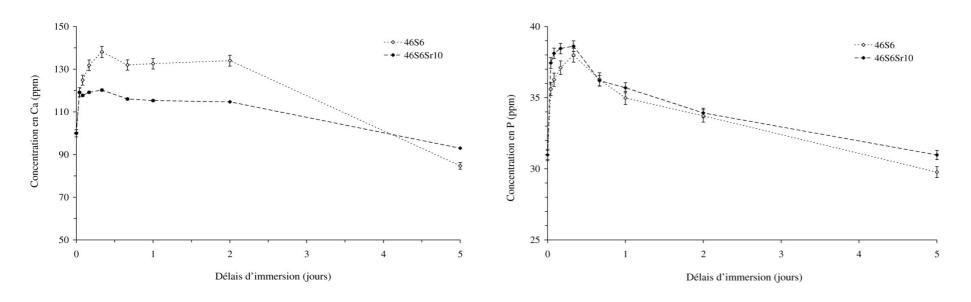




Introduction du Mg:

- Les teneurs en Ca et en P relargèes dans le SBF sont plus faibles que pour 46S6
- La croissance de la couche de phosphate de calcium à la surface du verre est plus importantes que dans le cas du 46S6 (Plus de Ca et de P disponibles à la surface de 46S6Mg)

Relargage du Ca et du P dans le SBF: Verre pur et verre dopé au Zn



-Variation des concentrations en Ca et en P proches de celles observées pour le verre dopé en Mg

- Cinétique de formation du phosphate de calcium modifiée par rapport au verre pur 46S6

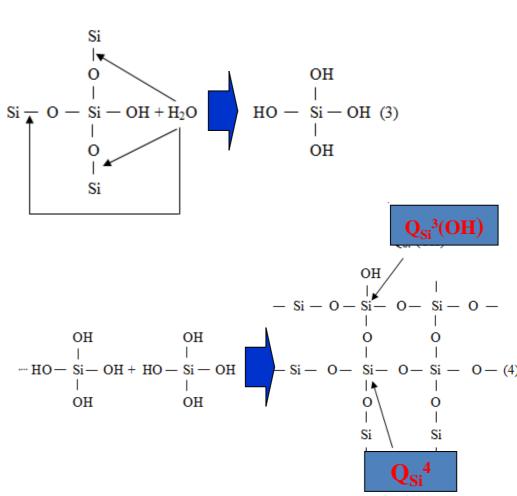
Relargage du Ca et du P dans: Verre pur et verre dopé au Sr

- Teneur en Ca varie de manière plus importante que pour le Mg ou la Zn
- Teneur en P reste comparable à celle du verre pur

Peu de différences observées entre 46S6 et 46S6Sr10 concernant la croissance et la cristallisation de la couche de phosphate de calcium à la surface des verres.

Réactions chimiques après immersion dans le liquide SBF

1- Echange rapide Ca²⁺, Na⁺ dans le verre avec des H⁺ du SBF pour former les groupes silanols Si-OH.

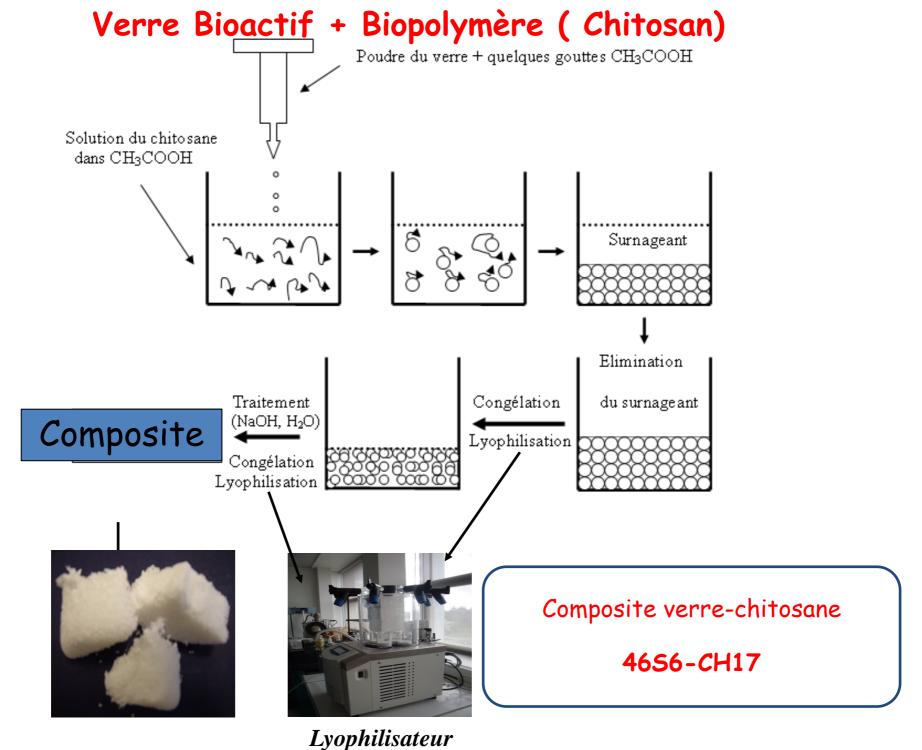

 Q_{Si}^{2} Si $- O - Si - O + 2H^{+}$ Si $- O - Si - OH + Ca^{2+}$ OH

2- Rupture des liaisons Si-O-Si.

Formation des groupes silanols Si-OH à l'interface verre / solution.

3- Condensation et repolymérisation des groupes silanols

Formation d'une couche riche en silice à la surface du verre pur.



Bioactivité du verre après immersion dans le liquide SBF

Formation d'un gel de silice à la surface du verre après immersion dans le liquide SBF.

- 4- Dépôt des ions Ca^{2+} et PO_4^{3-} à la surface du gel SiO_2 pour former un film de phosphate de calcium amorphe (PCA).
- 5- Evolution de la couche (PCA) en une couche cristallisée d'Hydroxyapatite carbonatée (HAC), proche de la phase minérale de l'os.

• X.V.Bui, H. Oudadesse et al., Korean J. Chem. Eng. 29: 215-220, 2012

Expérimentations in vivo

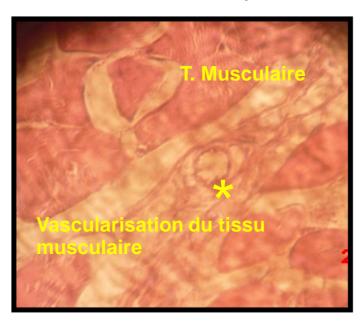
Modèle animal: - Rats Wistar: 3 mois, 300-385 g,

Biomatériaux implantés: - Verre bioactif pur

- Verre associé au chitosan (17%)

Dimensions des implants: Cylindres - 3 mm de diamètre

- 4 mm d'épaisseur


Site d'implantation: Condyle fémoral

Délais prélèvements: 4, 7, 15, 30 et 60 jours

Verre Bioactif + Biopolymère (Chitosan)

Effet in vivo du biopolymère Chitosan sur l'ostéoinduction

4656 implanté au niveau du muscle fémoral de rats: 60 jours

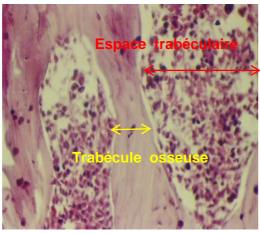
4656-CH implanté au niveau du muscle fémoral de rats: 60 jours

Ostéoinduction:

- -Absence de tissus osseux pour le 4656 : vascularisation musculaire normale
- -Présence de cellules osseuses: Ostéoblastes_ Ostéoclastes Remodelage osseux
- Présence du tissu osseux pour le 4656-CH au niveau du muscle fémoral après 60 jours

Verre Bioactif + Biopolymère (Chitosan)

Effet in vivo du biopolymère Chitosan sur l'ostéoporose



Déconnexion des réseaux trabéculaires osseux des rattes ovariectomisées

Phénomènes d'ostéoporose

46S6 après 60 j

46S6-CH après 60 j

Groupe avec implant 46S6-CH:

- Trabécules osseuses plus épaisses pour 46-CH que pour 46S6
- Espaces trabéculaires plus faibles que pour 46S6

Effet chitosan:

- Amélioration de l'architecture des trabécules osseuses
- Rétablissement des connexions des trabécules osseuses
- S. Jebahi, H. Oudadesse, H. Elfeki et al., J. App. Biomedicine, 10: 195-209, 2012

Conclusion

Evaluations "in vitro":

mise en évidences des effets des éléments dopants introduits sur le comportement du verre et cinétique de réactivité chimique

Tests biologiques:

Absence de toxicité, Bonne viabilité Prolifération cellulaire.

Evaluations « in vivo »

Bonne biocompatibilité Biomatériaux ostéoinducteur: Verre - Chitosan Traitement de l'ostéporose

Besoins en Biomatériaux

- 25 milliard d'euros taux de croissance annuel de 5 à 7%
- Un tiers de ce marché reviendrait à l'Europe
- Biomatériaux en site osseux:
 8 milliards d'euros
 taux de croissance annuel de 7%