

MÉTHODES CHIMIQUE DE FONCTIONNALISATION DES SURFACES DE VERRES PLATS

Thierry Gacoin

Groupe de Chimie du Solide Laboratoire de Physique de la Matière Condensée (LPMC) Ecole Polytechnique – CNRS – Institut Polytechnique de Paris

Surface modification through chemical reaction

Layer deposition

- hydrophylic / Hydrophobic
- Demolding agent
- Adhesion promoters
- Coupling agents to biological species
- catalysis

Large variety of functionnal silanes :

Perflorosilane precursors for hydrophobic windows

Glass Substrate

C8 – C16 chains : functionnality and packing

Playing on precursor structure for enhanced functionnality

- The structure of the layer is not as ideal as in the scheme above...
- Stability issues toward ageing : UV / Water / mechanical abrasion / dust deposition
- Stability toward glass surface evolution alcaline lixiviation
- Environnemental issues regarding perfluorinated precursors

$$RCHO + 2Ag(NH_3)_2^+ + 3OH^- \xrightarrow{H_2O} RCOO^- + 4NH_3 + 2H_2O + 2Ag$$

Metastable reactive solution

Ag+/Ag° single atoms E_{ENH} = -1,8V

 $Ag/Ag+/Ag^{\circ} E_{ENH} = 0.4V$

Rem : many other compounds can be electroless deposited : Ni / Au, but also ZnO, CdInGaSe, GaAs...

Precursors in solution partially condensed

Drying / thermal treatment

Thickness 50 nm -> few μ m

Deposition techniques

Mains issues related to functionnal coatings

- Thickness, strains, cracks...
- Post-deposition thermal treatments (600°C few min...)
- Hydrolytic properties
- Alcaline diffusion / buffer layer
- Mecanical properties (indentation, Opel, Taber)
- Large scale deposition process

Crack issues...

Strains (densification, capillary stresses)

- Critical thickness (few 100 nm few μm)
- Hybrid precursors

CH_3 -Si(OC_2H_5)₃

- Porogen agents

Silicate Binder chemistry

Alcaline silicates

Sol-gel enamel compositions

NaxSiyOz

Colloidal silica / alcaline silicate / Ca(Acetate)

Hybrid organic/inorganic coatings

Appropriate dispersion requires grafting on the silicate finder

Nanocristals exhibit remarkable properties modulated by size / shape / surface...

Absorbance / luminescence / (photo)catalysis / transport ...

Alexei Ekimov

Composite coatings with nanocristals

Remarkable ability to control nanocrystals size/shape/dispersion

Dispersion issue...

Composite coatings with nanocrystals – plasmonic $Cs_xWO_{3-\delta}$

Highly doped semiconductor exhibiting Near Infra-Red absorption

Dispersion issue : Glycidol functionnalization

Louise Daugas, PhD – K. Lahlil - JW Kim

Composite coatings for solar NIR screening

TEM cross section of the composite

Thickness	T _{vis}	A _{NIR}
5.9 μm	80%	74%

micellar assemblies of surfactants

Porous silica coatings

Following Mobile Oil Corp. work on the development of porous silica for catalysis

Catherine Jacquiod, Sophie Besson, Muriel Matheron

Organized mesopore 3D arrays

a=5.6 nm c=6.2 nm

CTAB

Copolymère

a=16 nm b=10 nm c=23 nm

Sophie Besson (PhD-SGR), Catherine Jacquiod

Functionnal coatings from mesoporous silica layers

AR coatings

Host for organized arrays of NP

Reservoir for active molecules (photochromic, hydrophobic)

Capillary condensation and contaminent adsorption

Microporous to macroporous

A. Huignard / S. Besson

François Guillemot PhD

AR coatings for photovoltaics

SGG commercial product

Photocatalytic coatings

> Enhanced performance : optimized microstructure and visible light activation

Highly porous photocatalytic coating

Mesoporous silica

TiO₂ preformed colloidal particles (commercial)

Enhanced performance

- x10 improvement of photocatalytic quantum yield
- Applications under low UV conditions
- Visible activation through N doping

Clarisse Durand, Morgan Gohin, Emmanuelle Allain – Sophie Besson - Léthicia Guéneau – Nicolas Chemin

Photocatalytic reduction toward metal/dielectric nanocomposites

Initial state	20 sec.	40 sec.	1min. Act	2min.
++++	111			

T. Das Gupta, J. Corde (CNRS PhD)

Tunable metal loading - Insulator to metal transition

Patterned electrodes

Joëlle Corde, T. Das Gupta (CNRS PhD)

Coatings from nanoparticles

TiΩ.	Gold	YVO ₄ :Eu
Silico	Silver	LaPO4
SIIICd	Diamond	YAG:Ce

Electrostatic grafting :

Gold particles for plamon exaltation in luminescent coatings

very simple to achieve with good density control (random)

JongWook Kim, M. Bérard, A. Huignard

Liquid deposition of NP and CVD growth

Diamond nanoparticles as seeds for CVD diamond films

SnO₂ catalyst for PECVD growth of Si nanowires

L. Dai (CNRS – LPICM)

Rare earth doped nanoparticles

YVO₄:Eu³⁺

LaPO₄:Ce³⁺ LaPO₄:Eu³⁺ LaPO₄:Ce³⁺,Tb³⁺

A. Huignard (CNRS PhD), G. Mialon (CNRS PhD), L. Devys (CNRS PhD)

Spray deposition of luminescent thin films

Arnaud Huignard – Vincent Rachet - Blaise Fleury (CNRS PhD)

Transparent Planilum – SPOT Project

______SAINT-GOBAIN

Luminophores

Lampe plane 1 face – env. 3µm 1600 V à 40 kHz Nanoborate : 06VBE552

Lampe plane 1 face – env. 3 à 4 µm 1600 V 40 kHz

Aranud Huignard, Vincent Rachet (SPOT ANR Project with Rhodia)

Light management in optical coatings

Functionnality optimization :

intrinsic nature of the optically active material

- absorption cross section
- internal quantum yield
- photostability

Structure of the active material

- morphology, size
- local microstructure

• light propagation

> Design of the film dielectric microstructure for optimized light propagation

Structuration through embossing / imprint

Amélie Revaux (CNRS PhD), Lucie Devys (CNRS PhD), Barbara Brudieu (SGR PhD) + SVI (Alban Letailleur...)

Photostructuration of sol-gel azo-based coatings

Nicolas Desboeuf (CNRS PhD), Sylvain Chevalier (CNRS PhD)

Alternate dip-coating deposition

Compensation des contraintes (900°C - 1 s)

60 couches alternées SiO₂ / TiO₂ sans craquelures ou rugosité importante

Bragg mirros elaboration from sol-gel TiO_2/SiO_2

PhD thesis Sébastien Labaste, Lyon

Bragg mirrors

Macroporous silica layers (n=1,24) Polymeric TiO₂ (n=2,08)

SAINT-GOBAIN

Simple process, tunable properties

Barbara Brudieu (SGR PhD), Fabien Sorin, François Guillemot, Jérémie Teisseire

Light trapping in Photovoltaic absorbers

Increase of optical path length in absorbing layers

Fabien Sorin, Barbara Brudieu (SGR PhD), Jérémie Teisseire, Iryna Gozhyk

Exalted absorption in a-SiH layers

Barbara Brudieu (SGR PhD), Fabien Sorin, François Guillemot, Jérémie Teisseire, Iryna Gozhyk

- Chemistry and liquid desposition routes offer unique opportunities for innovative products
- Gap between lab and industrial product
 - Academic collaborations
 - hard work of process engineering
- Interactions between wet coatings and PVD (magnetron) or CVD
- Important general issues:
 - Deposition processes, homogeneity over m² surfaces
 - Thermal treatments (laser...)
 - Binder silicate chemistry
 - Substrate/coating interactions
 - Strain control in sol-gel thin films

Sophie Besson Arnaud Huignard Lorraine Rabouin Vincent Rachet Mureil Matheron Barbara Brudieu Sandrine Ithuria Tapajyoti Das Gupta Nicolas Desboeufs Joëlle Corde Morgan Gohin **Emmanuelle Alain** Anaël Jaffrès Sylvain Chevalier Capucine Cleret de Langavan

SGR – SVI

Jérémie Teissère Iryna Goszhyk Katia Burov

LPMC group

Jean-Pierre Boilot Frederic Chaput Khalid Lahlil Isabelle Maurin Simon Delacroix

Essilor

