MODELING OF MELTS AND GLASSES BY MD SIMULATION: AN INTRODUCTION Bertrand Guillot

LPTMC, Université Pierre et Marie Curie (Paris 6), France

A brief history of MD simulations

Milestone

. . . .

- 1953 Seminal paper by Metropolis, Rosenbluth² and Teller: « EOS calculations by fast computing machines »
- 1956 B.J.Alder and T.E. Wainwright made the first presentation of a MD simulation
- 1964 A. Rahman publishes the first MD simulation with a continuous potential
- 1967 L. Verlet proposes the leap-frog algorithm
- 1972 The first MD simulation of water by F.H. Stillinger and A. Rahman
- 1976 The first MD simulation of silica (glass) by Woodcock, Angell and Cheeseman
- 1985 R. Car and M. Parrinello combine MD and density-functional theory

Present available on the web: CHARMM, AMBER, DLPOLY, GROMACS, LAMMPS, TINKER, VASP, CP₂K, SIESTA,..

General schema for MD simulation

Other choice:

- electronic structure calculation by AIMD (much more expensive x 10³-10⁴)

<u>Requirements</u>: evaluation of transport properties, phase equilibria, reactive species,.. large system size + long time dynamics \rightarrow Classical MD with empirical potentials

*Note: the use of effective charges (z_i) in empirical potentials is crucial to account (up to some extent) for polarization effects other choice: force field with explicit polarization (e.g. PIM , Madden et al. Faraday Disc. 2003)

A force field for silicates

	z(e)	B(kJ/mol)	ρ(Α)	C(A ⁶ kJ/mol)	
0	-0.945	870570.0	0.265	8210.17	
Si	1.89	4853815.5	0.161	4467.07	
Ti	1.89	4836495.0	0.178	4467.07	
Al	1.4175	2753544.3	0.172	3336.26	
Fe ³⁺	1.4175	773840.0	0.190	0.0	
Fe ²⁺	0.945	1257488.6	0.190	0.0	
Mg	0.945	3150507.4	0.178	2632.22	
Ca	0.945	15019679.1	0.178	4077.45	
Na	0.4725	11607587.5	0.170	0.0	
K	0.4725	220447.4	0.290	0.0	

Guillot and Sator, GCA 2007

Since then: new parameters for repulsion-dispersion forces (B, ρ ,C) and introduction of X-O covalent forces \rightarrow drastic improvement of transport properties for silicate melts *Dufils et al., Chem. Geol. 2017*

Chemical compositions (weight fraction) of the silicate melts investigated in this study

Silicate	$SiO_2(wt\%)$	TiO ₂ (wt%)	Al ₂ O ₃ (wt%)	Fe ₂ O ₃ (wt%)	FeO (wt%)	MgO (wt%)	CaO (wt%)	Na ₂ O (wt%)	K ₂ O (wt%)	Total
Rhyolite (Ry)	74.51 (257)	0.10 (0)	13.25 (54)	0.32(1)	1.28 (3)	0.08 (0)	0.75(3)	4.15 (28)	5.64 (25)	100.08 (1000)
Andesite (And)	56.65 (203)	1.01 (3)	17.41 (73)	4.63 (12)	3.53 (11)	4.30 (23)	7.38 (28)	3.23 (22)	1.56 (7)	99.70 (998)
Basalt(MORB)	50.59 (185)	1.52 (4)	15.11 (65)	1.15 (3)	8.39 (26)	7.77 (42)	11.87 (47)	2.94 (21)	0.13(1)	99.47 (1000)
Mars basalt (BM)	47.68 (176)	0.54 (1)	10.96 (48)	3.09 (9)	15.82 (49)	12.62 (69)	7.96 (31)	2.68 (19)	0.06(0)	101.41 (1000)
Green glass (LG15)	48.00 (179)	0.26(1)	7.74 (34)		16.50 (52)	18.20 (101)	8.57 (34)			99.27 (999)
Black glass (LG14)	34.00 (136)	16.40 (50)	4.60 (22)		24.50 (83)	13.30 (79)	6.90 (30)	0.23 (2)	0.16(0)	100.09 (1000)
Komatiite (Ko)	46.73 (168)	0.31 (1)	6.30 (27)		10.76 (32)	28.42 (152)	6.29 (24)	0.85 (6)	0.13(1)	99.79 (1001)
Peridotite (Pe)	45.10 (159)		2.80 (12)		10.40 (31)	38.40 (203)	3.40 (13)			100.10 (1001)
Olivine (Ol)	40.68 (142)		0.01 (0)		8.76 (25)	50.52 (262)	0.06(0)			100.03 (1000)
Allende m. (All)	38.57 (147)	0.14 (0)	3.71 (17)		24.79 (79)	29.23 (166)	2.62 (11)	0.48 (3)		99.54 (1000)
Fayalite (Fa)	29.49 (143)				70.51 (286)					100.00 (1001)

Si yellow

Courbe de transformation temps-température

Giordano and Dingwell, J. Phys.: Condens. Matter 15 (2003), S945

La transition vitreuse: un réel problème en MD

Quelques données clés des simulations ...

Les ressources informatiques sont limitées \longrightarrow N = 10³ - 10⁶ atomes, t_{max} ~ 100 ns

 $D_{min} = \langle R_{min}^2 \rangle / 6t_{max} \sim 10^{-13} \text{ m}^2/\text{s}$ pour un déplacement carré moyen de 6 A²

D'où (d'après Eyring) $\eta_{max} = k_B T / \lambda D_{min} = 300 \text{ Pa.s}$ (!!) $\lambda = 2.8 \text{ A pour les silicates}$

Vérification: (d'après Maxwell) $\tau_{relax} = \eta/G_{\infty} = 10 - 100 \text{ ns}$ avec $G_{\infty} = 0.3 \ 10^{10} - 3.10^{10} \text{ Pa}$

Remarque : à $T_a \eta \approx 10^{12}$ Pa.s il faudrait une simulation de 300 - 3000 s

Vitesse de trempe la plus lente: $10^2 - 10^3$ K/100 ns = $10^9 - 10^{10}$ K/s est-ce bien raisonnable ?

Pour un échantillon nanométrique (20 A)³ l'extrapolation donne 10⁹K/s (!)

Supercooled liquid versus crystal: the example of molten olivine (Fo₉₀)

Kinetic arrest and cooling rate: A simple way to estimate T_q (or T_f)

R²(t)=6Dt
R²(t)=6Dt
where
$$T_q = T_H - qt$$
 o\tau_q, $T_H < T_q < T_H$

Kinetic arrest $\longrightarrow \mathbb{R}^2(t) = \int_0^t 6Ddt \rightarrow constant \ value \ when \ t \rightarrow \tau_q$

Kinetic control of the structural relaxation through the glass transition range

Kinetic decoupling between structure makers and structure modifiers when $T \rightarrow T_q$

 $Log \eta = A + B/(T-T_o)$ $T_o \sim o$ pour les liquides forts o < $T_o < T_g$ pour les liquides fragiles

Т _g (К) = (dilat	cométrie; calorimétrie)	T_{g}^{exp}
Rhyolite (74.5 wt%SiO ₂)	1500; 1600	1125
andesite (56.7 wt%SiO2)	1116; 1210	1013
$MORB (50.6 \text{ wt}\%\text{SiO}_2)$	1178; 1000	950
Mars (47.7 wt%SiO ₂)	960; 940	
Lunar Glass 14 (34.0 wt\%SiO_2)	1126; 1020	
Lunar Glass 15 (48.0 wt%SiO ₂)	960; 990	
komatite (46.7 wt%SiO ₂)	1147; 900	~1000
peridotite (45.10 wt%SiO ₂)	1037; 1000	~1000
Allende (38.6 wt%SiO ₂)	1043; 900	
olivine (40.7 wt%SiO ₂)	1100; 1000	
fayalite (29.5 wt%SiQ.)	1137; 1000	

Hétérogénéités dynamiques (L-J)

L.Berthier, Physics 4, 2011 Berthier and Biroli, Rev. Mod. Phys. 83, 2011

GeO2: Micoulaut et al., Phys. Rev. E 73 (2006), 31504

Pour un taux $\Delta T/\Delta t$ (K/s) fixé, une estimation de Tg \approx T (MSD<10A²)