Modélisation des liquides et des verres par dynamique moléculaire : l'exemple des magmas silicatés

Nicolas Sator

Laboratoire de Physique Théorique de la Matière Condensée

Journées Verre Dijon, vendredi 15 novembre 2024

1) Qu'est-ce que la dynamique moléculaire ?

Modélisation à l'échelle atomique

Thermodynamique, structure, dynamique...

2) Les magmas silicatés

Journées Verre Dijon, vendredi 15 novembre 2024

Du microscopique au macroscopique

N >> 1 atomes $u(r_{ij})$ **Champ de force (interactions)** - oscillateur harmonique - coulombien - Lennard-Jones $u(r_{ij}) = 4 \varepsilon \left(\left(\frac{\sigma}{r_{ii}} \right)^{12} - \left(\frac{\sigma}{r_{ii}} \right)^{6} \right)$ Principe fondamental de la dynamique $m_i \frac{\mathrm{d}\vec{v_i}}{\mathrm{d}t} = \sum \vec{F}(r_{ij})$ Forme analytique de $\vec{r}_i(t), \vec{v}_i(t)$ pour t > 0 $\overline{A} = \frac{1}{T} \int_0^T A(\{\vec{r}_i(t), \vec{v}_i(t)\}) dt$ Physique statistique : Grandeurs macroscopiques = moyennes temporelles

Du microscopique au macroscopique

LJ avec $\varepsilon = 1$ kJ/mol et $\sigma = 3,4$ Å, $\delta t = 0,0001$ ps

Qu'est ce que la dynamique moléculaire ?

Propriétés de transport

Coefficient de diffusion : D

avec le Mean Square Displacement (MSD)

$$d^{2}(t) = \frac{1}{N} \sum_{i=1}^{N} \langle [\vec{r}_{i}(t) - \vec{r}_{i}(0)]^{2} \rangle \xrightarrow{\bullet} 6Dt$$

Silice : N=1000 en NVE, $u(r_{ij})$ Buckingham+ coul. à T= 2273 K et P=0 kbar

 $\vec{r}_i(t)$, $\vec{v}_i(t)$

diffusif

Propriétés de transport

- Coefficient de diffusion : D
- Viscosité : η

avec le tenseur des pressions et formalisme de Green-Kubo

$$P_{\alpha\beta}(t) = \frac{1}{V} \left(\sum_{i} m v_{i\alpha} v_{i\beta} + \sum_{i} \sum_{j>i} r_{ij\alpha} F_{ij\beta} \right)$$

 $\alpha \neq \beta = x, y, z$

Qu'est ce que la dynamique moléculaire ?

 $\vec{r}_i(t)$, $\vec{v}_i(t)$

La dynamique moléculaire en résumé

Modélisation par DM classique

- N \approx 10³ 10⁶ atomes dans une boîte
- Champ de force empirique (répulsion, électrostatique, liaison covalente...)

Résolution numérique des équations du mouvement

Pour chaque atome $i: m_i \frac{\mathrm{d}\vec{v_i}}{\mathrm{d}t}$

Moyennes temporelles sur $\Delta t \sim 10~ns$

Méthodes de la physique statistique

Contrôle de :

- Composition
- **T**empérature
- **P**ression

• Structure à l'échelle atomique : g(r)

 $\sum_{\substack{j \neq i \\ \hline \vec{r_i}(t), \ \vec{v_i}(t)}} \vec{F}(r_{ij})$

- Thermodynamique : n(P,T), solubilité
- **Propriétés de transport** : viscosité, conductivité électrique, diffusion...

Qu'est ce que la dynamique moléculaire ?

1 nm

La dynamique moléculaire en résumé

Une approche puissante...

- Modélisation **réaliste** des compositions (complexes)
- Contrôle des (hautes) pressions et températures
- Cadre unifié pour étudier la structure atomique & les grandeurs macroscopiques (thermodynamiques et propriétés de transport)

... avec des limites

- Modélisation empirique et $\vec{F}(r_{ij})$ dépend de **paramètres ajustables**
- Taille limitée L $\approx 3 100$ nm (N $\approx 10^3 10^6$ atomes)
- Durée limitée $\Delta t \approx 10-100~\mathrm{ns}$

donc fluide pas trop visqueux : $\eta < \sim 100$ Pa.s (=1000 P)

qui repose sur des données

- expérimentales (principalement à pression atmosphérique)
- dynamique moléculaire quantique ab initio (structure) :

N < 10³ et $\Delta t < 0,1$ ns

La dynamique moléculaire en résumé

De nombreuses applications

- Composition : atomes, molécules, macromolécules...
- État thermodynamique : liquide, solide, gaz, verre, granulaire...
- En physique statistique, sciences des matériaux, biologie, géochimie...

Du liquide au verre

Propriétés des magmas silicatés

Propriétés des magmas silicatés

Qu'est-ce qu'un magma ?

Qu'est-ce qui fait fondre les roches en profondeur ?

Quels rôles jouent les magmas ?

Silicate fondu = liquide ionique avec SiO_2 , Al_2O_3 , FeO, MgO, CaO, Na₂0...

Convection et diminution de la pression ou présence de « volatils » $(CO_2, H_20...)$

- Volcanisme
- Dynamique du manteau
- Dégazage du CO₂ (climat)
- Océans magmatiques, exoplanètes...
- Propriétés physico-chimiques des magmas à haute pression et température ?
- Effets des « volatils » $(CO_2, H_20...)$?

Dijon

Expériences à haute pression et température délicates ! Besoin d'une description microscopique

Les magmas silicatés

Composition chimique des magmas

• Silicates fondus : SiO₂, MgO, FeO, Fe₂O₃, Al₂O₃, CaO, Na₂O, TiO₂, K₂O... teneurs en oxydes (wt%) varient **continûment** selon la composition

Silicate	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MgO	CaO	Na ₂ O	K ₂ O
Rhvolite	$\frac{74.5}{74.5}$	0.1	13.3	0.3	1.3	0.1	0.8	4.2	5.6
Andesite	56.9	1.0	17,5	4,6	3.6	4.3	7,4	3.2	1,5
MORB	50,9	1,6	15,1	1,1	8,4	7,8	12,0	3,0	0,1
Komatiite	48,9	0,4	4,1		11,2	27,4	8,1		,
Péridotite	45,1		2,7		10,4	38,4	3,4		
Olivine	40,7				8,8	50,5			
Kimberlite	37,2	2,0	$3,\!5$		10,3	36,2	9,0	0,8	1,0
		1	1	1	1	1	1	1	1

Composition dépend de l'histoire du magma : P, T, roche source, teneur en volatils, taux de fusion, cristallisation, fusion, mélange... • Modéliser les liquides de composition naturelle : Terre, Lune, Mars, exoplanètes...

- silicates : SiO_2 , MgO, FeO, Fe₂O₃, Al₂O₃, CaO, Na₂O, TiO₂, K₂O
- carbonates : MgCO₃, CaCO₃, Na₂CO₃, K₂CO₃ et Li₂CO₃

+ volatils (H₂O, CO₂...)

• Évaluer les grandeurs physiques d'intérêt en fonction de P et T :

- structure atomique : g(r), coord.
- thermodynamique : équation d'état, solubilité
- propriétés de transport : viscosité $\eta,$ conductivité $\sigma,$ coeff. diffusion D
- Aux hautes pression (~10 GPa) et température (~2000 K)

Développer de nouveaux champs de force $\vec{F}(r_{ij})$

Simples, réalistes et transférables à toute composition :

• Silicates (ioniques et covalents) : O²⁻, Si⁴⁺, Ti⁴⁺, Al³⁺, Fe²⁺, Fe³⁺, Mg²⁺, Ca²⁺, Na⁺ et K⁺

Guillot, Sator, GCA 2007

Dufils, Folliet, Mantisi, Sator, Guillot, Chemical Geology 2017

Équation d'état du MORB

Les magmas silicatés

18 / 22

Exemple : composition des basaltes lunaires

Différentes compositions en **Titane** (TiO₂) : **Pauvre (0,2 wt%), intermédiaire (9,2 wt%), riche (16,4 wt%)**

Exemple : composition des basaltes lunaires

Différentes compositions en **Titane** (TiO₂) : **Pauvre (0,2 wt%), intermédiaire (9,2 wt%), riche (16,4 wt%)**

Van Kan Parker, Sanloup, Sator, Guillot, Tronche, Perrillat, Mezouar, Rai, van Westrenen, Nature geosciences **2012**

Exemple : solubilité du CO₂ dans les silicates

Les magmas silicatés

Exemple : solubilité du CO_2 dans les silicates 30 km 100 km 300 km MORB Ŧ EXP CO_2 CO_{2} MORB haplo - basalt Ŧ 1673 Amalberti et al. 2021 haplo - andesite Ŧ 0.3 1873 $+ CO_2$ haplo - andesite by MD 1873 MORB by MD MORB by MD / 2273 **CO**² (g/g) Champ de force MORB by MD & réaction chimique Dixon et al. 1995 $\mathrm{CO}_2 + \mathrm{O}_{\mathrm{melt}}^{2-} \rightleftharpoons \mathrm{CO}_3^{2-}$ Eguchi & Dasgupta 2018 Mattey 1991 Pan et al. 1991 Δ ы Stanley et al. 2001 0 Kim et al. 2018 Ο 0.1 Solubilité CO₂ **élevée** en profondeur ! Loi de Henry 0 8 10 12 6 P (GPa) Amalberti et al. 2021 avec Le Losg, Sarda, Neuville..., Guillot, Sator GCA 2011

Les magmas silicatés

21 / 22

Les magmas silicatés

- Dynamique moléculaire : modélisation, entre théorie et expérience
- Choix d'un champ de force réaliste paramétré par des données expérimentales et de simulations *ab initio*
- Contrôle de la composition et des conditions thermodynamiques

Structure à l'échelle atomique & propriétés macroscopiques (thermodynamique, transport, solubilité...)

- Limitations : modélisation, taille et échelle de temps (liquides fluides)
- Applications aux systèmes complexes : sciences des matériaux (verres), biologie, géochimie...

Bertrand Guillot (CNRS) Boris Mantisi Elsa Desmaele Thomas Dufils