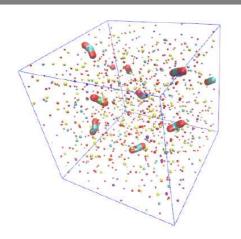
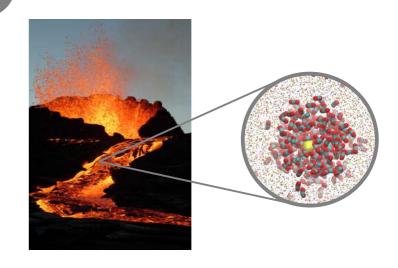

Modélisation des liquides et des verres par dynamique moléculaire : l'exemple des magmas silicatés

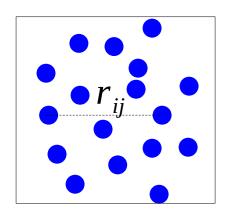
Nicolas Sator


Laboratoire de Physique Théorique de la Matière Condensée

1) Qu'est-ce que la dynamique moléculaire?



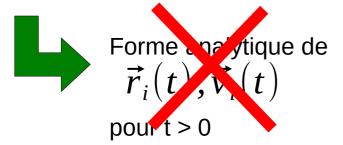
Modélisation à l'échelle atomique


Thermodynamique, structure, dynamique...

2) Les magmas silicatés

Du microscopique au macroscopique

N >> 1 atomes

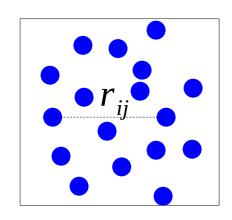


Champ de force (interactions)

- oscillateur harmonique
- coulombien
- Lennard-Jones $u(r_{ij}) = 4 \varepsilon \left(\left(\frac{\sigma}{r_{ii}} \right)^{12} \left(\frac{\sigma}{r_{ii}} \right)^{6} \right)$

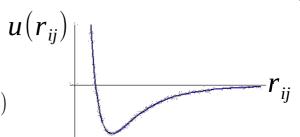
$$u(r_{ij})$$

Principe fondamental de la dynamique $m_i rac{\mathrm{d} ec{v}_i}{\mathrm{d} t} = \sum ec{F}(r_{ij})$


$$\overline{A} = \frac{1}{T} \int_0^T A(\{\vec{r}_i(t), \vec{v}_i(t)\}) dt$$

Physique statistique:

Grandeurs macroscopiques = moyennes temporelles


Du microscopique au macroscopique

N >> 1 atomes

Champ de force (interactions)

- oscillateur harmonique
- coulombien
- Lennard-Jones $u(r_{ij}) = 4\varepsilon \left(\left(\frac{\sigma}{r_{ii}} \right)^{12} \left(\frac{\sigma}{r_{ii}} \right)^{6} \right)$

Principe fondamental de la dynamique

pour i=1,2,...,N discrétisé

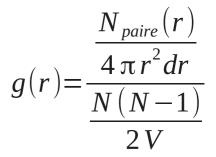
$$\vec{r}_i(t+\delta t) = \vec{r}_i(t) + \vec{v}_i(t)\delta t + \underbrace{\vec{F}_i(t)}_{2m}(\delta t)^2$$

Valeurs **numériques** de

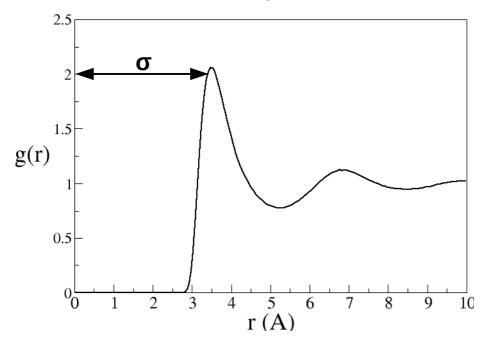
$$\vec{r}_i(t_p)$$
, $\vec{v}_i(t_p)$

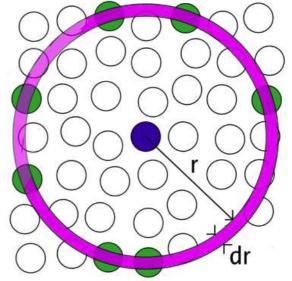
pour $t_p = p \, \delta t$ où p = 1, 2, 3... M

$$= \overline{A} \simeq \frac{1}{M} \sum_{p=1}^{M} A(\{\vec{r}_i(t_p), \vec{v}_i(t_p)\})$$


Physique statistique:

Grandeurs macroscopiques = moyennes temporelles

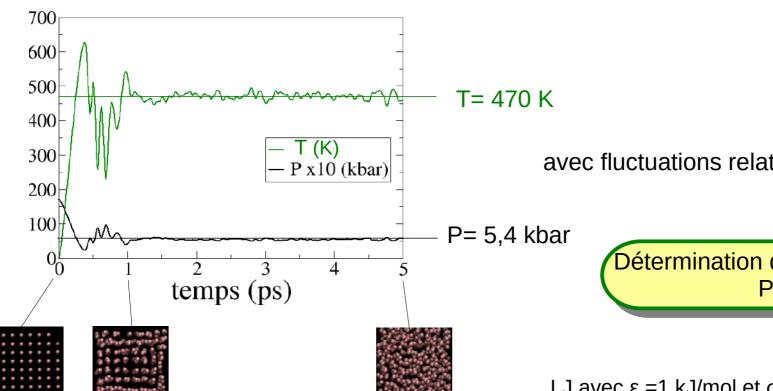

Structure


$$\vec{r}_i(t), \vec{v}_i(t)$$

- Fonctions de distribution radiale g(r)
- Facteurs de structure S(k)
- Coordinations
- Distributions angulaires
- Anneaux
-

Argon : N=500 en NVE, $u(r_{ij})$ Lennard-Jones et ho=1,39 g/cm 3

Description de la structure à l'échelle atomique

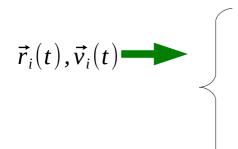

LJ avec ϵ =1 kJ/mol et σ =3,4 Å, δ t =0,0001 ps

Grandeurs thermodynamiques

$$\vec{r}_i(t)$$
, $\vec{v}_i(t)$

- Energie $E_{tot}(t) = \sum_{i=1}^{N} \frac{1}{2} m \vec{v}_i^2 + \sum_{i < i} u(r_{ij}) = constante$
- Température $T = \langle T_{inst} \rangle = \frac{2}{3N-3} k_B \langle \sum_{i=1}^{N} \frac{1}{2} m \vec{v}_i^2 \rangle$
- $P = \langle P_{inst} \rangle = \frac{Nk_BT}{V} + \frac{1}{3V} \langle \sum_{i=1}^{N} \vec{r_i} \vec{F}_i \rangle$ Pression

Argon : N=500 en NVE, $u(r_{ij})$ Lennard-Jones et ho=1,39 g/cm 3

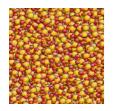


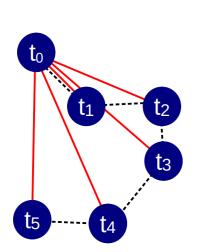
avec fluctuations relatives en N^{-1/2} \approx 1%

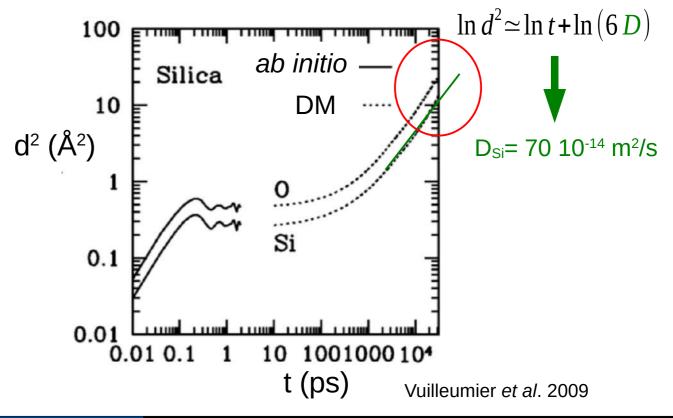
Détermination de l'équation d'état

LJ avec ϵ =1 kJ/mol et σ =3,4 Å, δ t =0,0001 ps

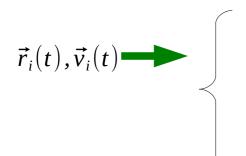
Propriétés de transport


Coefficient de diffusion : D

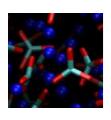

avec le Mean Square Displacement (MSD)

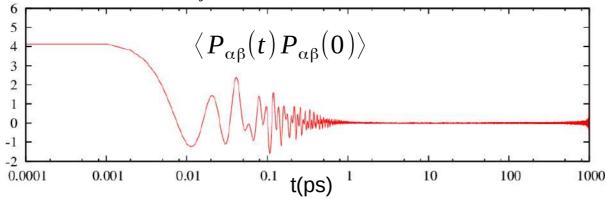

$$d^{2}(t) = \frac{1}{N} \sum_{i=1}^{N} \langle [\vec{r}_{i}(t) - \vec{r}_{i}(0)]^{2} \rangle \rightarrow 6Dt$$

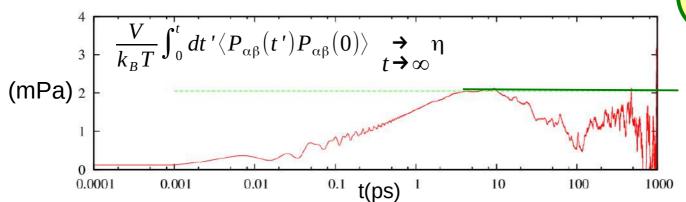
diffusif


Silice : N=1000 en NVE, $u(r_{ij})$ Buckingham+ coul. à T= 2273 K et P=0 kbar

Propriétés de transport


- Coefficient de diffusion : D
- Viscosité : η


avec le tenseur des pressions et formalisme de Green-Kubo


$$P_{\alpha\beta}(t) = \frac{1}{V} \left(\sum_{i} m v_{i\alpha} v_{i\beta} + \sum_{i} \sum_{j>i} r_{ij\alpha} F_{ij\beta} \right)$$

$$\alpha \neq \beta = x, y, z$$

 Na_2CO_3 : N=2058 en NVE, $u(r_{ij})$ Buckingham+coul., T= 1200 K et P=0 kbar

Calcul de D, η, conductivité électrique

 $\eta = 2 \text{ mPa}$

La dynamique moléculaire en résumé

Modélisation par DM classique

- N $\approx 10^3$ 10^6 atomes dans une boîte
- Champ de force empirique (répulsion, électrostatique, liaison covalente...)

Résolution numérique des équations du mouvement

Pour chaque atome $i: m_i \frac{\mathrm{d}\vec{v}_i}{\mathrm{d}t}$

$$m_i \frac{\mathrm{d}\vec{v}_i}{\mathrm{d}t} = \sum_{j \neq i} \vec{F}(r_{ij})$$

$$\vec{r}_i(t), \vec{v}_i(t)$$

1 nm

Moyennes temporelles sur $\Delta t \sim 10$ ns

Méthodes de la physique statistique

Contrôle de :

- Composition
- Température
- Pression

- Structure à l'échelle atomique : g(r)
- Thermodynamique : n(P,T), solubilité
- **Propriétés de transport** : viscosité, conductivité électrique, diffusion...

La dynamique moléculaire en résumé

Une approche puissante...

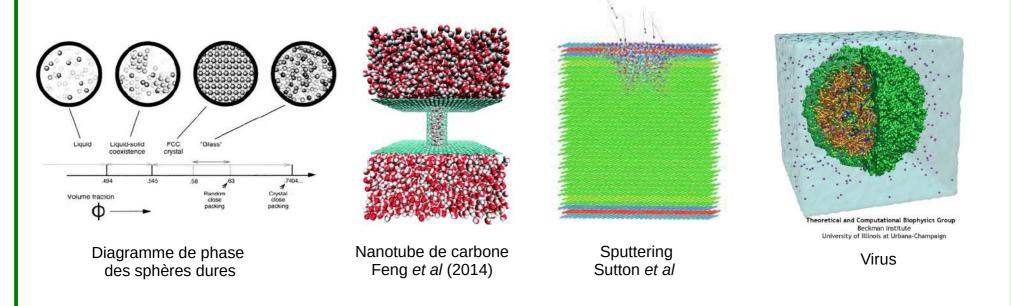
- Modélisation **réaliste** des compositions (complexes)
- Contrôle des (hautes) pressions et températures
- Cadre unifié pour étudier la structure atomique & les grandeurs macroscopiques (thermodynamiques et propriétés de transport)

... avec des limites

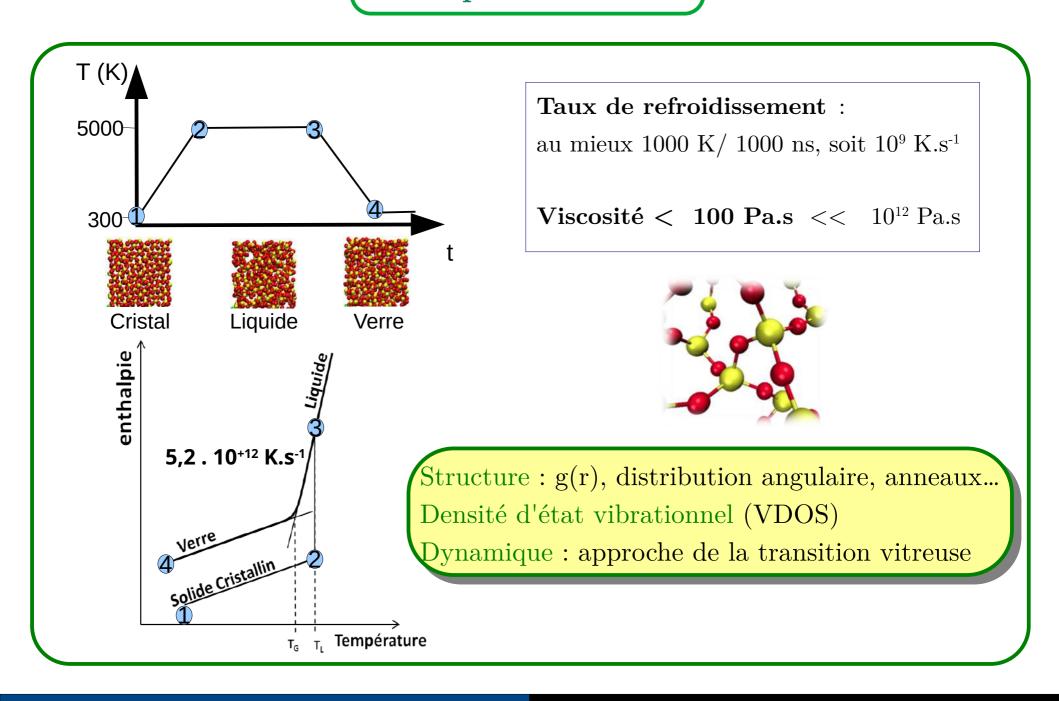
- Modélisation empirique et $\vec{F}(r_{ij})$ dépend de **paramètres ajustables**
- Taille limitée L $\approx 3 100 \text{ nm} \text{ (N } \approx 10^3 10^6 \text{ atomes)}$
- Durée limitée $\Delta t \approx 10 100 \text{ ns}$

donc fluide pas trop visqueux : $\eta < \sim 100 \text{ Pa.s} (=1000 \text{ P})$

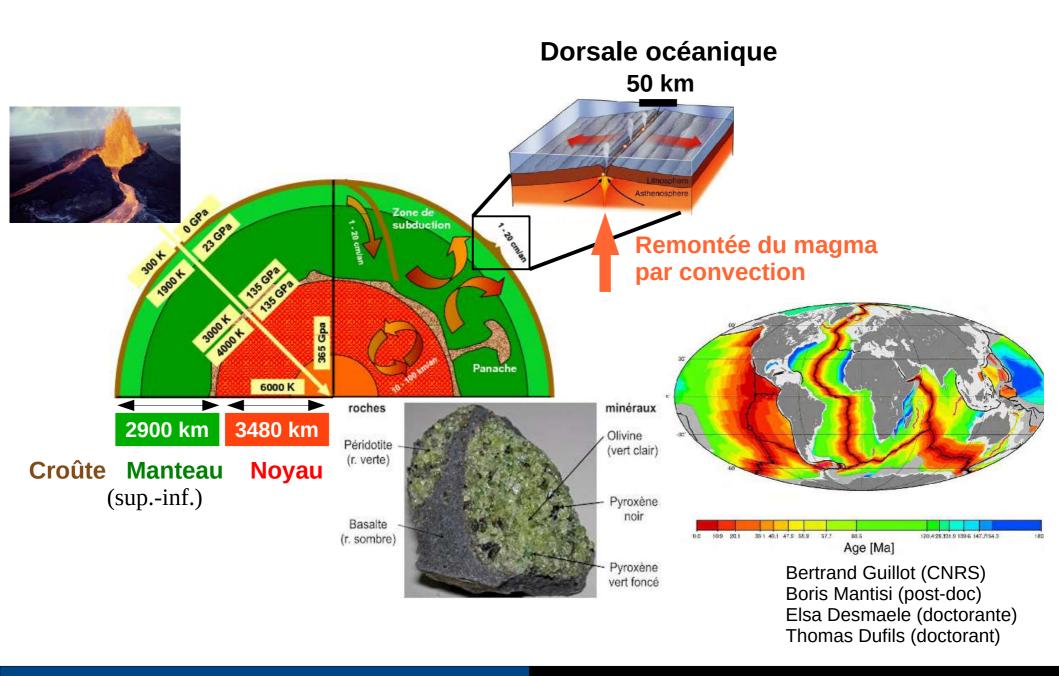
qui repose sur des données


- expérimentales (principalement à pression atmosphérique)
- dynamique moléculaire quantique *ab initio* (structure) :

 $N < 10^3 \text{ et } \Delta t < 0.1 \text{ ns}$


La dynamique moléculaire en résumé

De nombreuses applications


- Composition : atomes, molécules, macromolécules...
- État thermodynamique : liquide, solide, gaz, verre, granulaire...
- En physique statistique, sciences des matériaux, biologie, géochimie...

Du liquide au verre

Propriétés des magmas silicatés

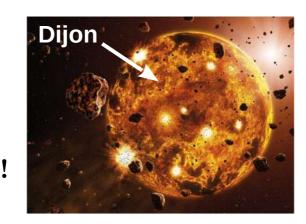
Propriétés des magmas silicatés

Qu'est-ce qu'un magma?

Qu'est-ce qui fait fondre les roches en profondeur ?

Quels rôles jouent les magmas?

 $Silicate fondu = liquide ionique avec <math>SiO_2$, Al_2O_3 , FeO, MgO, CaO, Na_2O ...


Convection et diminution de la pression ou présence de « volatils » (CO₂, H₂0...)

- Volcanisme
- Dynamique du manteau
- Dégazage du CO₂ (climat)
- Océans magmatiques, exoplanètes...

- Propriétés physico-chimiques des magmas à haute pression et température ?
- Effets des « volatils » $(CO_2, H_20...)$?

Expériences à haute pression et température délicates ! Besoin d'une description microscopique

Composition chimique des magmas

• Silicates fondus: SiO₂, MgO, FeO, Fe₂O₃, Al₂O₃, CaO, Na₂O, TiO₂, K₂O... teneurs en oxydes (wt%) varient continûment selon la composition

Silicate	SiO_2	TiO_2	Al_2O_3	Fe_2O_3	FeO	MgO	CaO	Na ₂ O	K_2O
Rhyolite	$74,\!5$	0,1	13,3	0,3	1,3	0,1	0,8	4,2	5,6
Andesite	56,9	1,0	17,5	4,6	3,6	4,3	7,4	3,2	1,5
MORB	50,9	1,6	15,1	1,1	8,4	7,8	12,0	3,0	0,1
Komatiite	48,9	$0,\!4$	4,1		11,2	27,4	8,1		
Péridotite	45,1		2,7		10,4	38,4	$3,\!4$		
Olivine	40,7				8,8	50,5			
Kimberlite	37,2	2,0	$3,\!5$		10,3	36,2	9,0	0,8	1,0

Composition dépend de l'histoire du magma : P, T, roche source, teneur en volatils, taux de fusion, cristallisation, fusion, mélange...

Objectifs:

- Modéliser les liquides de composition naturelle : Terre, Lune, Mars, exoplanètes...
 - silicates: SiO₂, MgO, FeO, Fe₂O₃, Al₂O₃, CaO, Na₂O, TiO₂, K₂O
 - carbonates : MgCO₃, CaCO₃, Na₂CO₃, K₂CO₃ et Li₂CO₃

+ volatils $(H_2O, CO_2...)$

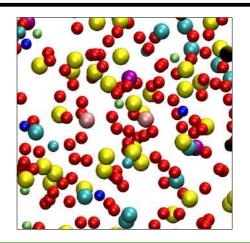
- Évaluer les grandeurs physiques d'intérêt en fonction de P et T :
 - structure atomique : g(r), coord.
 - thermodynamique : équation d'état, solubilité
 - propriétés de transport : viscosité η , conductivité σ , coeff. diffusion D
- Aux hautes pression (~10 GPa) et température (~2000 K)

Développer de nouveaux champs de force $\vec{F}(r_{ij})$

Simples, réalistes et transférables à toute composition:

• **Silicates** (ioniques et covalents) : O²-, Si⁴⁺, Ti⁴⁺, Al³⁺, Fe²⁺, Fe³⁺, Mg²⁺, Ca²⁺, Na⁺ et K⁺

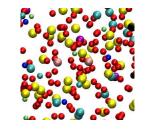
$$\begin{cases} \vec{F}_{ij}(r) = -\nabla u_{ij}(r) \\ u_{ij}(r) = \frac{q_i q_j}{4\pi\epsilon_0 r} + A_{ij} e^{-\frac{r}{\rho_{ij}}} - \frac{C_{ij}}{r^6} - B_{ij} e^{-\frac{(r-\delta_{ij})^2}{2(\sigma_{ij})^2}} \end{cases}$$

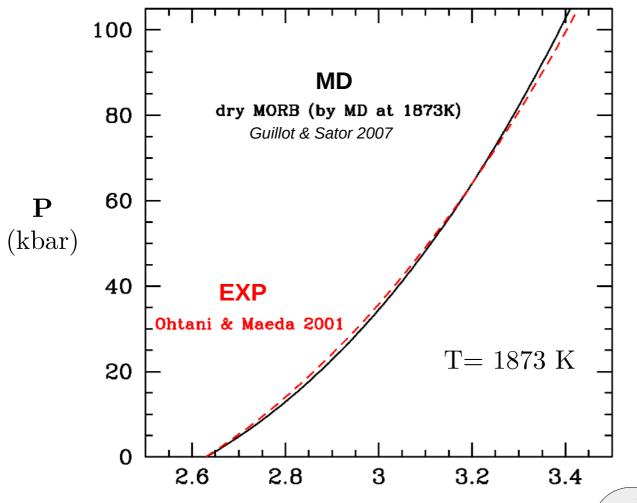

$$Coulomb \quad répulsion \qquad attraction \quad (liaison covalente)$$

10 espèces d'ions : O, Si, Al, Mg...

55 interactions i-j : O-O, O-Si...

de nombreux **paramètres** à ajuster :


données exp. à P = 0, peu à P > 0...



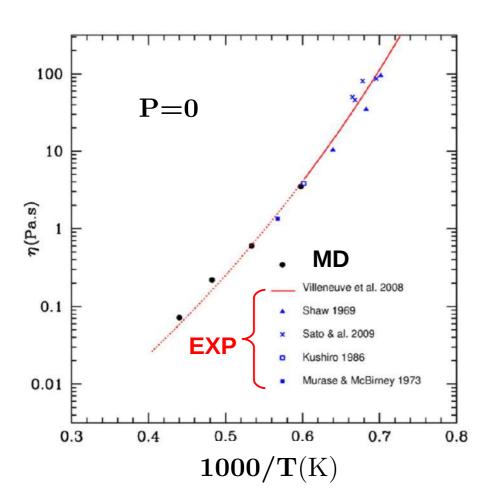
Guillot, Sator, GCA 2007

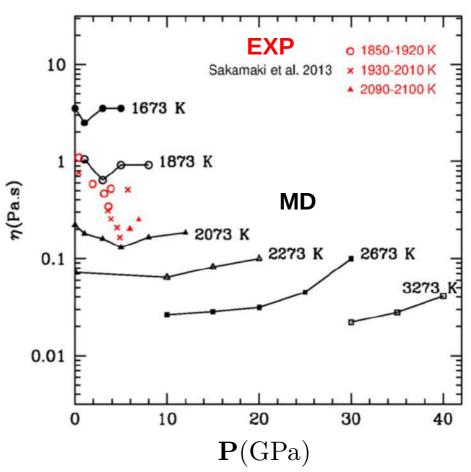
Dufils, Folliet, Mantisi, Sator, Guillot, Chemical Geology 2017

Équation d'état du MORB

 \mathbf{n} (g/cm³)

MORB						
TK21B	wt%					
atlantic						
SiO_2	50.6					
${ m TiO}_2$	1.5					
$\mathrm{Al_2O_3}$	15.1					
$\mathrm{Fe_2O_3}$	1.2					
FeO	8.4					
MgO	7.8					
CaO	11.9					
Na ₂ O	2.9					
$ m K_2O$	0.1					


Flottabilité du magma en profondeur?

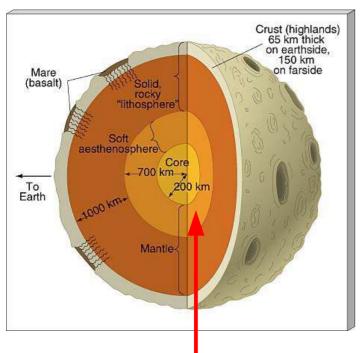

Viscosité du MORB

$$P_{\alpha\beta}(t) = \frac{1}{V} \left(\sum_{i} m_{i} v_{i\alpha} v_{i\beta} - \sum_{i} \sum_{j>i} r_{ij\alpha} F_{ij\beta} \right)$$
$$\eta = \frac{V}{k_{\rm B}T} \lim_{t \to \infty} \int_{0}^{t} dt' \left\langle P_{\alpha\beta}(t') P_{\alpha\beta}(0) \right\rangle$$

$$\alpha, \beta = x, y, z$$

Dufils, Folliet, Mantisi, Sator, Guillot, Chemical Geology 2017

Mobilité du magma en profondeur?

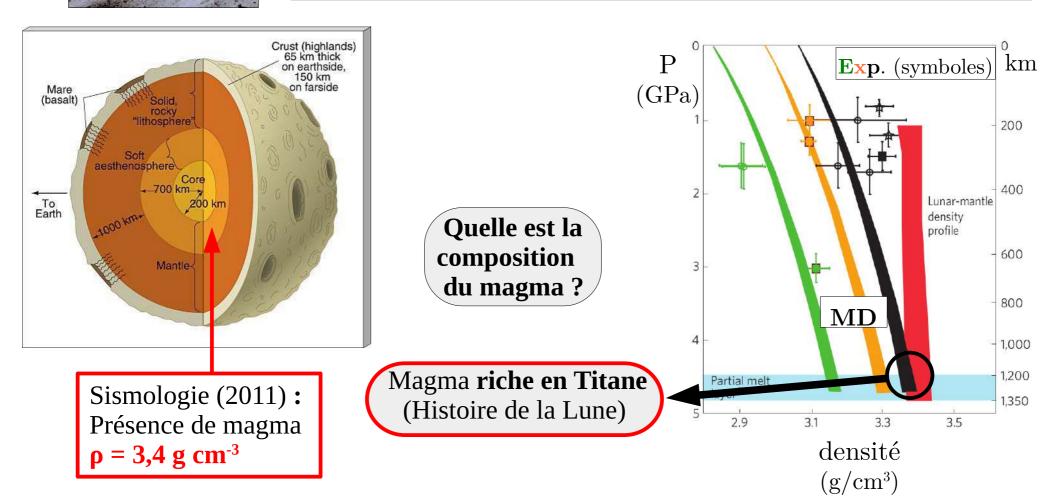

Exemple : composition des basaltes lunaires

Différentes compositions en **Titane** (TiO₂) :

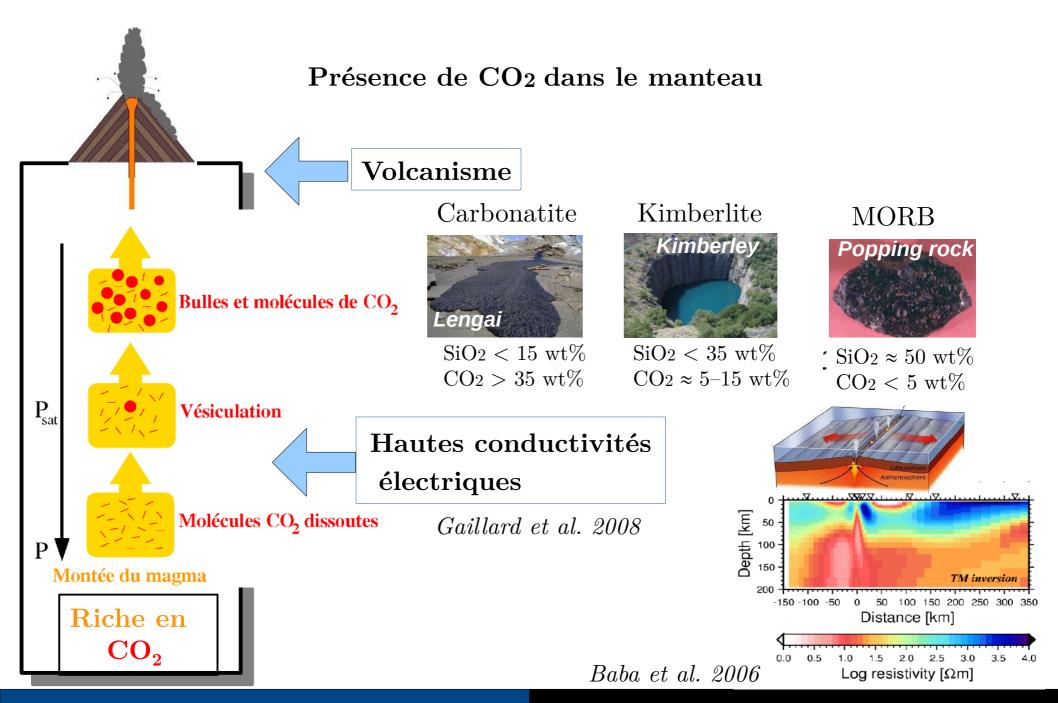
Pauvre (0,2 wt%), intermédiaire (9,2 wt%), riche (16,4 wt%)

Sismologie (2011) : Présence de magma ρ = 3,4 g cm⁻³ Quelle est la composition du magma?

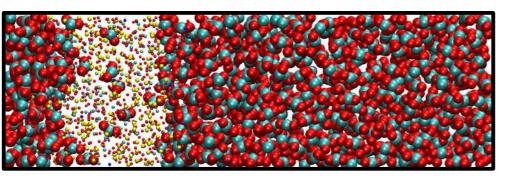
Bille de verre dans un échantillon lunaire (mission chinoise Chang'e 5)

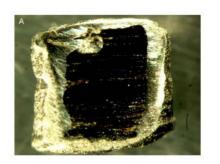

B.-W. Wang et al., Science385, 1077 (2024)

Exemple : composition des basaltes lunaires

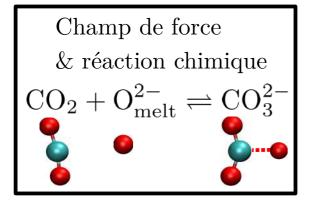


Différentes compositions en **Titane** (TiO₂): **Pauvre** (0,2 wt%), **intermédiaire** (9,2 wt%), **riche** (16,4 wt%)

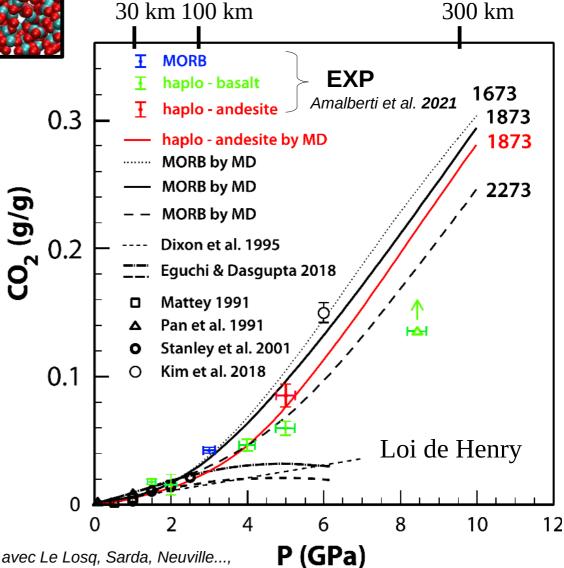



Van Kan Parker, Sanloup, Sator, Guillot, Tronche, Perrillat, Mezouar, Rai, van Westrenen, Nature geosciences **2012**

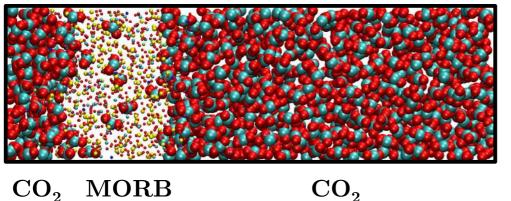
Exemple : solubilité du CO₂ dans les silicates

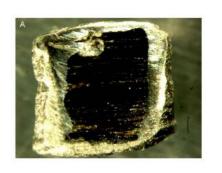


Exemple : solubilité du CO₂ dans les silicates



 CO_2 CO_2 MORB $+ CO_2$

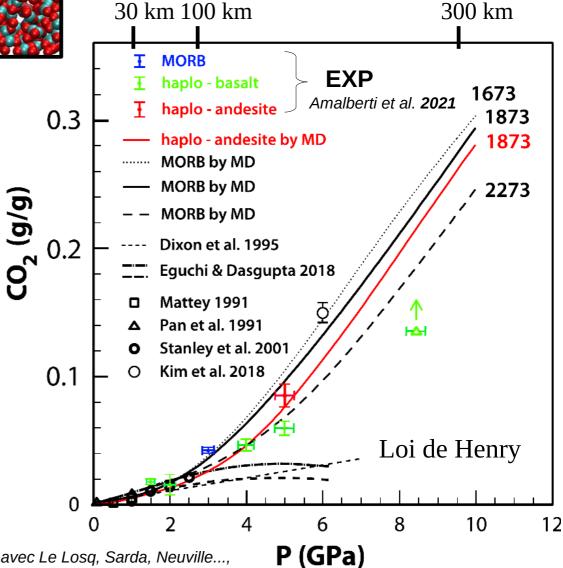

Solubilité CO2 **élevée** en profondeur!



Guillot, Sator GCA 2011

Amalberti et al. **2021** avec Le Losg, Sarda, Neuville...,

Exemple : solubilité du CO₂ dans les silicates



- Atmosphère primitive + riche en CO₂
- Éruptions explosives

 $+ CO_2$

Flux de CO₂ vers l'atmosphère + importants

> Solubilité CO2 **élevée** en profondeur!

Guillot, Sator GCA 2011

Amalberti et al. **2021** avec Le Losg, Sarda, Neuville...,

Conclusion

- Dynamique moléculaire : modélisation, entre théorie et expérience
- Choix d'un champ de force réaliste paramétré par des données expérimentales et de simulations *ab initio*
- Contrôle de la composition et des conditions thermodynamiques
 - Structure à l'échelle atomique & propriétés macroscopiques (thermodynamique, transport, solubilité...)
- Limitations : modélisation, taille et échelle de temps (liquides fluides)
- Applications aux systèmes complexes : sciences des matériaux (verres), biologie, géochimie...

Bertrand Guillot (CNRS)
Boris Mantisi
Elsa Desmaele
Thomas Dufils