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 Rigidity transitions and compositional trends 

 

 « Topological engineering » (Mauro-Gupta) 

 

 MD based rigidity and applications 

 

 Non mean-field effects 

 

 

Modélisation des propriétés thermodynamiques par 

une approche topologique 

Optimizing glass = finding anomalies 

with composition 



Molecular network (contraint counting) 

• Atoms 

•Covalent bonds 

•Stretching and bending interactions 

A) Constraint theory 

Mechanical structure 

• Nodes 

• Bars 

•Tension 

Basic idea: An analogy with mechanical structures (Maxwell) 
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j 

Stretching constraints aij 

r/2 

Bending constraints bijk 

2r-3 

1. Enumeration of mechanical constraints 
Consider a r-coordinated atom 

 If r=2, there is only one angle.  
Each time, one adds a bond, one needs to define 2 new angles 

 
 We consider a system with N species of concentration nr.  
  
 The number of constraints per atom is : 

𝑛𝑐 =
 𝑛𝑟(

𝑟
2
+ (2𝑟 − 3)𝑁

𝑟≥2

 𝑛𝑟
𝑁
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A) CONSTRAINTS AND RIGIDITY TRANSITIONS 

J.C. Phillips, JNCS 1979 



 We introduce the network mean coordination number 

 

 

 

e.g. accessed from the Bhatia-Thornton pair distribution function gNN(r) 

 

 Then nc can be simply rewritten as : 

 

 

 

 

 Invoking the Maxwell stability criterion for isostatic structures nc=D=3 

 we find a stability criterion for: 

  

 or :  

 

 

 Networks with nc<3 are underconstrained (flexible). With nc>3, they are 

overconstrained 

 

 Important quantity: number of floppy (deformation) modes : f=3-nc 

Rigidity transition  
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𝑛𝑐 = (
𝑟 

2
+ 2𝑟 − 3 )=3 

𝒓 =
𝟏𝟐

𝟓
= 𝟐. 𝟒 



Stretching        Bending 

  

2. Rigidity transition: 
 

 Amorphous silicon and harmonic potential 
 
 

 
 
 
 

 RANDOM Bond depletion (<r> decreases) on a-Si. 
 

 Calculation of the eigenmodes (vibrational 
frequencies) of the system 
 

 Example of simple eigenmode calculation:  
 the linear chain 

 
 

A) CONSTRAINTS AND RIGIDITY TRANSITIONS 



 Force acting on spring j: 
 

 Newton’s law gives:  
 
 with frequencies  
 
 Normal mode solution : 

 
 
 
which actually reduces the problem to  an eigenvalue (W) problem: 
 
 
 
 
 
 
 

 More general: normal modes=eigenvalues  W of the dynamical matrix 



2. Rigidity transition: 
 

 Thorpe (1983) found that bond depleted a-Si with mean coordination 
number <r> < 2.385 contain zero frequency normal (floppy) modes W. 
 

 Their number f (rank of the W=0 block of the dynamical matrix) scales as  
 
 

  rNf c
2
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 Flexible to rigid elastic phase transition 
 Control parameter <r> 
 Order parameter f 

 
 Power-law Cii=(<r>-2.4)p (p=1,5) in the stressed 

rigid phase. Elastic phase transition. 
 

 Isostatic glass nc=3 is at the R transition 

 He and Thorpe, PRL 1985 



Examples of application: 
 

 GexSe1-x glasses:  
Ge is 4-fold and Se is 2-fold. 

 

 Ge has 2r-3=5 BB and r/2=2 BS constraints 

 Se has 1 BB and 1 BS constraint 

 

 nc=2(1-x)+7x=2+5x 

 Stability criterion for nc=3 i.e. for x=0.2 

 

 Mean coordination number at 20% Ge 

   

Ge20Se80=GeSe4 glasses are isostatic 

𝑟 = 𝑟𝐺𝑒𝑥 + 𝑟𝑆𝑒 1 − 𝑥 =  4𝑥 + 2 1 − 𝑥
= 2.4

 

Varshneya et al. JNCS 1991 

Ge-Se 

Ge-Sb-Se 

Playing with numbers…can be a dangerous game ! 



Chalcogenide network glasses 

r(Se)=2 ,  r(Ge)=4 

 

GexSe1-x 

Ge-Sb-Se, Ge-As-Se, etc… 

Varshneya et al., JNCS 1991 

Boehmer and Angell, PRB 1994 



C) Constraints and thermodynamics 

 

 Hamiltonian of a system containing f floppy modes with zero frequency energy: 

 

 

 

 

 

 Out of which can be calculated a partition function: 

 

 

 

 Floppy modes are cyclic variables of H 

  

 

 Provides a channel in the potential energy 

landscape (PES) since the energy does not 

depend upon a change in a floppy mode 

coordinate 
Naumis, PRB 2000, 2005 



Constraints and thermodynamics:  

 

 For a given inherent structure (local minimum of 

the PES), the number of channels is given by f. 

 

 Entropy due to floppy modes (available phase space 

to visit).  

 

 At fixed volume, W(E,V,N) is proportional to the 

area defined by the surface f constant E. S=kBlnW 

 

)/ln(3 0VVNkfS B

f=0 

f non zero 

Naumis, Phys. Rev. E71, 026114 (2005). 



Basics 
 Gupta & Mauro (2009) generalization of  the Phillips approach by inclusion of 

temperature-dependent constraints: 

 

 

 

 

 Required parameters: 

 Ni(x): mole fraction of each network-forming species i 

 wi,a: number of a-type constraints for each species i 

 qa(T): temperature-dependent rigidity of constraint a 

 Gupta & Mauro, J. Chem. Phys. 130, 094503 (2009) 

Mauro, Gupta, Loucks, J. Chem. Phys. 130, 234503 (2009) 

D) Temperature dependent constraints 
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Continuous Form: 

Discrete Form: 

Conversion between discrete and 

continuous forms: 

qa(T): temperature-dependent rigidity of constraint a 



Steps 
1. Identify and count the number of network-forming species as a function of 

composition 

 

2. Identify and count the number of constraints associated with each of those 

species 

 

3. Rank the constraints in terms of their relative strength (onset temperature) 

 

4. Connect the change in degrees of freedom (f = d – n) with change in specific 

property of interest 

D) Temperature dependent constraints 



 Applied to borate glasses Na2O-B2O3 

 

 Addition of modifier oxide to B2O3 can cause 

 boron coordination change 

 formation of NBO 

 

 

 

 

 

 

 Remember of simple bond models for alkali borates for x>0.33 

B 

O 
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Step 1: Model the local structure as a function of composition 

D) Temperature dependent constraints 

𝑁2 𝑥 =
3(3𝑥−1)
5(1−𝑥)

           𝑁3 𝑥 =
1−2𝑥 
1−𝑥

        𝑁4 𝑥 =
3−4𝑥 
5(1−𝑥)

 

 



 Complete statistics 

x>0.33 

 

x<0.33 

 

 

 

Step 1: Model the local structure as a function of composition 

D) Temperature dependent constraints 

𝑁2 𝑥 =
3(3𝑥−1)
5(1−𝑥)

           𝑁3 𝑥 =
1−2𝑥 
1−𝑥

        𝑁4 𝑥 =
3−4𝑥 
5(1−𝑥)

 

 𝑁3 𝑥 = 1 − 𝑅 = 1 −
𝑥

1−𝑥
 = 
1−2𝑥

1−𝑥
 

 

𝑁4 𝑥 = 𝑅 =
𝑥

1 − 𝑥
 

Can sometimes be re-expressed in terms of bonding 

oxygens (those participating to the network 

connectivity, i.e. NB=4 on a B4). 

Mauro et al. JCP 2009 



α: B-O and MNB-O linear (BS) constraints 

 Two a constraints at each oxygen  

 

 β: O-B-O angular constraints 

 Five β constraints at each Q4 unit. 

 Three at each Q3 unit. 

 

 γ: B-O-B and B-O-M(NB) angular constraints 

 One g constraint at each bridging oxygen 

 

 μ: modifier rigidity (due to clustering) 

 Two μ constraints per NBO-forming Na atom 
 

Each involves an onset temperature at which q(T) becomes active for T<Tonset 

Similar procedure for borosilicates 

D) Temperature dependent constraints 

Step 2: Count constraints on each atom (borates) 
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• Constraints become rigid as temperature is lowered 
 

– Onset temperatures: 

Smedskjaer, Mauro, Sen, Yue, Chem. Mater. 22, 

5358 (2010) 

T T T Tg b  a  

D) Temperature dependent constraints 

Step 3: Ranking of constraints according to temperature 



Temperature-Dependent 

Constraint Model 

Structural Information 

Naumis Floppy 

Mode Analysis 

Adam-Gibbs Relation 

Fraction of Network-

Forming Species, N(x) 

Topological Degrees of 

Freedom, f(T,x) 

Configurational 

Entropy, Sc(T,x) 

Utimate goal: Tg(x), m(x), Cp(x) 

Viscosity, (T,x) 

D) Temperature dependent constraints 

Step 4: Calculating properties…the roadmap 



D) Temperature dependent constraints 

Step 4: Calculating properties 

A. Use Adam-Gibbs definition of viscosity 

 

 

 

B. Use the fact that Tg is the reference temperature at which =1012 Pa.s. Since  

is constant for any composition, we can write: 

 

 

 

 

C. Remember that Naumis’ model leads to Sc # f (floppy modes). 

 

D. This allows writing: 



D. Remember the definition of fragility : 

 

 

E. Using Naumis’ definition, once more, one obtains: 

 

 

 

 

F. Application to sodium borates 

 

 

 

D) Temperature dependent constraints 

Step 4: Calculating properties 



D) Temperature dependent constraints 

Results: Fragility and Tg variation of sodium borate glass 

JCP  2009, 130,  



 

 

 

 

 

 
 Tg of a borate glass can be predicted from that of a silicate glass with f(x,y,z,T) as the only 

scaling parameter  
 

 Fragility: onset temperatures Tβ,Si and Tμ are treated as fitting parameters (1425 K) 
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Smedskjaer et al., J. Phys. Chem. B 115, 12930 (2011) 

D) Temperature dependent constraints 

Results: Fragility and Tg variation of sodium borosilicate glass 



 

 

 

 

 

 

D) Temperature dependent constraints 

Results: Tg and fragility variation of alkali phosphate glass 

Rodrigues et al. J. Non-Cryst. Solids 405 12 (2014) 

Hermansen et al. JCP  140, 154501 (2014)  



 

 

 
 

 Idea: critical number of constraints (ncrit) must be present for material to 

display mechanical resistance 

 n = 2: rigidity in one dimension (Se) 

 n = 3: rigidity in three dimensions (SiO2) 

 n = 2.5: rigid 2D structure (graphene) → ncrit 

 

 Proposal: hardness is proportional to the number of 3D network constraints at 

room temperature 

 

 

? 

D) Temperature dependent constraints 

Results: Calculating the hardness from constraints 



 

 

 
 

• Glass hardness can be predicted from the average number of room 

temperature constraints, with only an unknown proportionality 

constant (dHV/dn) 
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Smedskjaer, Mauro, Yue, PRL 105, 115503 (2010) 

D) Temperature dependent constraints 

Results: Hardness Hv in borates and borosilicates 



 

 

 

 

 

 

 

 Topological engineering: exploring new composition spaces where glasses 

have not yet been melted 

 

 Difference in scaling is due to T-dependence of constraints 
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D) Temperature dependent constraints 

Results: Quantitative design of glasses (borates) 



• Correlating the kinetic fragility index m with thermodynamic property change at 

Tg 

 

 

 

 

– Adam-Gibbs model 
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Smedskjaer et al., J. Phys. Chem. B 115, 12930 (2011) 

C) Temperature dependent constraints 

Results: Calculating the specific heat from constraints 

matthieu.micoulaut@upmc.fr  Atomic modeling of glass – LECTURE 9 TOPOLOGY 



According to temperature-

dependent constraint theory, 

configurational entropy at Tg 

is inversely proportional to 

Tg. 

This is a configurational temperature of 

the glass at Tg. For a normal cooling 

rate (10 K/min), Tconf = Tg. 
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C) Temperature dependent constraints 

Results: Calculating the specific heat from constraints 



 

 

 

 
 

 ΔCp(x,y,z) can be predicted with A is the sole fitting parameter (19 
kJ/mol) 
 

 Thermodynamic property changes during the glass transition are 
connected to the kinetic fragility index  
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Smedskjaer et al., J. Phys. Chem. B 115, 12930 (2011) 

C) Temperature dependent constraints 

Results: Results for the specific heat (borosilicates) 



Constraints/rigidity – Summary 

 

 Powerful and simple tool. 

 

 Builds on a structural model 

 

 Prediction of fragility, Tg, hardness, Cp as a function of 

composition 

 

 Parameters ? 



D. MD BASED RIGIDITY THEORY  
 

1. We start from the estimation of constraints: 
 
 
 
 
Questions and limitations  

 Phase separation  ? Isolated molecular units, As-Ge-S,… 
 

 Coordination number, always 8-N ? 
 CN(Na)=5 in silicates,  
 CN(As)=4 in certain As-Se and P-(Se,S) compositions,… 
 Delocalisation, non-directional (ionic) bonding… 
 

 Count all interactions (constraints) ? 
 Broken Si-O-Na angular constraints in oxides,… 
 Thermally activated broken constraints (Mauro-Gupta) 
 
 nc at all thermodynamic conditions (T,P,x) 
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Links glass topology with simulations and the statistical physics of liquids  



Yildirim, Raty, Micoulaut, Nature Comm. 7, 11086 (2016).  

Structure Factors Pair Correlation Functions 

𝐶𝑁 =  𝜌4π𝑟2 𝑔 𝑟 𝑑𝑟

𝑟

0

 

Need to have a good starting MD generated structural model 

GexSe100-x 



Straightforward in oxydes and  
4 neighbours around Ge,Si 

 two local environments for Ge 
 CN(Te) >2 

Ge1Sb2Te4 

Micoulaut et al.  PRB 2010 

2. General idea:  
 
 Generate atomic trajectories for a given system at (x,P,T) using Molecular 

Dynamics simulations (classical or First Principles) 
 

 Compute from these trajectories 
 1. bond-stretching (# nb of neighbours or neighbor distribution) 



Estimate of bond-bending from partial bond angle 
distribution (PBAD) Pi(q)  
with i<N(N-1)/2 arbitrary for a given atomic j0k triplet 
 
•Splitting the BAD into contributions from neighbours. 
•Compute the second moment (si , sometimes fwhm) of 
each PBA Distribution. 
 

d1 

d2 

d3 
d4 

d5 N first neighbor distance distrib. 

• N(N-1)/2 bond angles analyzed 
(102), (103) … (304) … (N-1 0 N) 

Peugeot labelling 

• Not all are independent ! 

s 

s s 
s 

 Compute from these trajectories 
 1. bond-bending (work on angles) 

𝜃𝑖
2 =  𝜃2𝑃𝑖 𝜃 𝑑𝜃 𝜎𝑖

2 = 𝜃𝑖
2 − 𝜃𝑖

2



 Angular constraints are intact only for Si and 

BO 

 

Clear gap between s(Si), s(BO)  

and s(Na) and s(NBO) 

Focus on bond-bending constraints 

BO 

NBO 

Bauchy et al, JNCS 2011

SiO2-2Na2O 

Constraints+Dynamics of liquids 



  
 Enhanced ease for relaxation 

(minimum of the activation energies   

for (D,)) for nc~3  

(in the pressure window 3 < P < 12 GPa). 

 

 

 Enhanced relaxation, relaxation time 

also minimizes  

 

 

Constraints+Dynamics of liquids 

Separate calculation of 

dynamic/thermodynamic 

properties and constraints 

Bauchy, Micoulaut, Nature Comm. 6, 6398 (2015) 



 
 Isostatic (nc=3) glass transitions display 

an ease to reversibility at the glass 

transition.   

 

 Thermal anomalies are linked with 

anomalies in transport in the liquid and 

with structural anomalies in the glass.  

Constraints+Dynamics of liquids 

Chakravarthy et al. JPCM 

(2005) 

PxGexSe1-2x 

Glass reversibility 



Bauchy et al. Nature Comm. 6, 6398 (2015) 

Micoulaut, Bauchy, PSS 2013 

Constraints+Dynamics of liquids 



Are these constraints 

homogeneously distributed ? 

 

 

 

 

Do they impact more subtle 

aspects of dynamics ? 
Dynamic heteroegenities 

sq(BO) 

Bauchy et al. EPL 2013 

Micoulaut et al. PRL 2017 

Constraints+Dynamics of liquids 



Mean Field prediction is well reproduced  

At 300 K  but constraints soften at high 

temperature 

 

Weak variation of Ge BB at 

the rigidity transition   

nc = 5x + 2 

 

Constraints+Dynamics of liquids 



Non-monotonous Diffusion !  

Diffusivity markedly decreases  

between 18-22 % Ge 

Expectation :  

 Mobility decreases as Ge 

content increases 

Constraints+Dynamics of liquids 



MYEGA 

Equation 

VFT Equation 

Minimum fragility is 

attained at the rigidity 

transition  

Fragilities of many  glassy network 

forming melts show a global minima when 

scaled to isostatic composition 

Constraints+Dynamics of liquids 

Fragility 

Yildirim, Raty, Micoulaut, Nature Comm. 7, 11086 (2016).  



Mechanical properties and rigidity 

Bauchy et al. Acta Mater. 121, 234 (2016) 

Bauchy et al. PRL 114 (2015) 125502 

Mechanical behaviour contrasted to nc  

 

• Rigidity status (nc) is controlled by pressure 

• Application to NS2 and CSH (cement) 

• Numerical tensile experiments 



Fracture toughness and rigidity 

Isostatic systems 

• Maximum fracture toughness 

 

• Rigidity transition coincides with a 

ductile-to-brittle transition.  

 

 

• Network is rigid but free of eigen-stress 

and features stress relaxation through 

crack blunting, resulting in optimal 

resistance to fracture. 

Données GS:  

Guin et al. J.AM.Ceram. Soc (2002) 



Irradiation in quartz 

Irradiation-induced damage in quartz investigated from rigidity theory 

• MD simulations of quartz by high energy ballistic (irradiation) motion 

 vO linked with deposited energy E (strategy J.M. Delaye, JNCS 2001) 

• MD based constraint counting 

• Relating MD calculated properties to nc.  

 

 

 

 

 

 

 

 

 

Wang et al. JNCS 463 (2017) 25 



Evidence of a rigid-to-flexible rigidity transition  

• Arises from the simultaneous loss of atomic eigenstress and 

onset of network flexibility 

• Link with structural signatures (FSDP) 

 

Irradiation in quartz 

Wang et al. JNCS 463 (2017) 25 



Conclusion: 
 

 Rigidity transitions provide an interesting framework for the 

understanding of compositional trends in glasses 

 

 Optimizing properties from the inspection of anomalous behaviors 

(maxima and minima) 

 

 Various means can serve to bring a complex system from flexible to rigid 

 Composition, pressure, irradiation, ion strengthening,… 
 

 Models (Mauro-Gupta) permit to capture salient features of 

thermodynamic properties with composition. 

 

 MD based constraint theory leads to an atomic scale insight and links 

with various properties (transport, structure, mechanics, conduction,…) 

 
 

M. Micoulaut, Advances Phys. X 1, 147 (2016).  


