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Outline of the Lecture
• Computational Methods to Simulate Glasses

• Molecular Dynamics Simulations (Born-Oppenheimer, Carr-Parrinello, classical)

• Density Functional Theory

• Empirical Force-Fields

• Machine Learning Potentials

• Validation of Glass Structures

• Ab initio MD and DFT: when are mandatory

• Performance of Empirical and ML-potentials: Sodium Silicate Glasses and Mixed 
Alkali Effect in Aluminosilicate Glasses

• Mechanical Properties: tensile, compression and indentation tests

• The timescale problem: studying Crystallization through Metadynamics Simulations

• Conclusions





(Image taken from http://www.chem.wayne.edu/~hbs/chm6440/PES.gif)
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Molecular Dynamics Simulations

The classical equations of motion (netwon II law) are integrated numerically

Trajectory: positions, velocities and accellerations of 
atoms in time

http://www.chem.wayne.edu/~hbs/chm6440/PES.gif


Scheme of a basic classical MD algorithm



Exploiting MD simulations to generate Glass Structures

• Simulated glass structures are prepared computationally in the same way as real glasses.
• Models of crystalline (or random) systems are melted; the melts are then quenched , freezing the structure
into a disordered glassy phase.
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• Quenching rates much higher than the experimental ones (0.5-5 1012 K/s vs 1-100 K/s)
• The fictive temperature of the simulated glass is higher than the target temperature
• More disordered structure than the real ones
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The PES is described by empirical 
parametric functions of nuclear 
(internal coordinates) (Force-Fields)

Molecular Dynamics Simulations

PES is described by ML algorithms

Classical MD ML-accellerated MD
Ab initio MD

Born-Oppheneimer MD
Carr-Parrinello MD

PES computed at the 
Density Functional Theory 
level



A few hundreds of 
atoms for few 
picosecondsUp to 106 atoms 

for nanoseconds 
(microseconds)

Ab initio accuracy with 
a lower computational 

cost



Density Functional Theory (DFT): basics

Hohenberg-Kohn and Kohn-Sham (1964) established the rules of 
the DFT (Density Functional Theory) to compute the ground state 
energy as a functional of the electron density

Based on 2 Theorems:

•  Theorem 1. The external potential or the ground state energy E of a molecular system is a unique 
functional of electron density.

       𝐸 = 𝐸 𝜌 𝑟

• Theorem 2. The electron density that minimizes the energy of the overall functional is the true 
ground state electron density

• 𝐸 𝜌 𝑟 ≥ 𝐸0 𝜌0 𝑟



single-particle wavefunctions ψi(x) are used to express the electron 
density
fi are the occupation numbers (1 – spin unrestricted ; 2 – spin restricted)

the wavefunctions are subjected to the orthonormality constraint

KS DFT total energy is written as 

Electron-electron interactions

Electron-nuclei interactions

Nuclei-nuclei interactions

KOHN-SHAM FORMULATION



Schrödinger-like kinetic energy expressed in terms of the 
single particle wavefunctions

Hartree energy, i.e. the Coulomb electrostatic interaction 
between two charge distributions

exchange interaction and the electron correlations due to many 
body effects

= ?    Exact Functional Unknown

Jacob’s ladder of XC functionals

electrostatic interaction between electrons and nuclei



Rigid Ionic Model Core Shell Model
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DFT forces (Ry/Bohr)

ML-FFs
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Etot= Ebond + Eval + Etors + Eover + Eunder + 

Elp + Evdwals + Ecoulomb

Force-Fields for Silica-based Glasses: our experience
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PMMCS BMP

Coulomb Morse function:
Short term (VdW) 

interactions

Repulsive
(high T and P)
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PMMCS

BMP only

BMP & PMMCS

- Silicates (Si-O-Si, Si-Si)

- Aluminosilicates (Al-Si, Al-Al)

- Phosphates (P-O-P, P-P)

- Phosphosilicates (P-O-Si, P-Si)

- Borates (B-O*,B-O-B, B-B)

- Borosilicates (B-O*, B-O-Si, B-Si)

Fitting Strategy

PMMCS: Empirical Fitting on 

Structure and Elastic constants of 

binary oxide crystals

BMP: Empirical fitting on T-O-T angles and 

densities of crystals 

Elements Covered by our FFs
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Taken from J. Phys. Chem. Lett. 2020, 11, 20, 8710–8720

Illustration of descriptor-based machine learning 
potentials.



ML techniques are not extrapolative so your dataset must contain all possible 
configurations that you can encounter during MD simulations



Problems with the generation of a dataset for oxide glasses

The dimesionality of the configurational and compositional space in
multicomponent oxide glasses is enormous!



Database
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TemperatureMD simulations Modifications

½ DFT optimized (PBE)
½ Random distortion

20 simulations for each
composition (300 
atoms)

TOTAL

1080 structures
324000 atoms

ML Potentials for Sodium Silicate Glasses: Dataset 
Generation



Scatter plot for (a) total energies, (b) forces on the x, y, and z, and (c) virials computed at the DFT level and 
predicted by the MLP for the test set.



Validating the glass structural models

Real Space Correlation Functions

Neutron & X-Ray Structure Factors

IR & RAMAN Spectroscopy

Phonon Dispersion Spectra

NMR Spectroscopy



AI MD simulations: when it is 
mandatory

• When we want accurate and reliable results 

• Reactivity

• For studying complex systems for which empirical force fields are not available or accurate 
(systems containing elements whose coordination changes with composition or it is difficult to 
reproduce because quantum mechanical effects are important, i.e. Jahn Teller effect).

Boron-containing glasses 

Aluminosilicate Glasses with 
peraluminous composition 



Glasses containing transition metal elements: i.e. Vanadium 

Taken from Song et al. Advanced Functional Materials 28, 
2018,1802564

Coordination as a function of the oxidation state

Wansi et al. JNCS 2023 
https://dx.doi.org/10.2139/ssrn.4570126
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Performance of Empirical and ML-potentials: 

Sodium Silicate Glasses

Bertani et al. J. Chem. Theory Comput. 2024, 20, 3, 1358–1370



Total Distribution Functions and Bond Angle Distributions
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Si[Qn] speciation

Q2

Q3

Q4

Qn distributions



Vibration Density of States Coefficient of Thermal 
Expansion (CTE)

𝑪𝑻𝑬 =
𝟏

𝑽𝟎

𝒅𝑽

𝒅𝑻



35Wrong Structural Models – No Mixed Alkali Effect observed

Log ρ

Mixed Alkali Effects (MAE) in AluminoSilicate Glasses not observed with all empirical FFs



Clusterization

Al clusterization

K clusterization

High K mobility

Strong Al-K interaction
Low K mobility
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High Si-O-Al intermixing

… Effect of the structural models

BMP                                     SHIK                                       GS



Mechanical Tests and Properties

Uniaxial Tensile Tests

Hydrostatic Compressive Tests

Elastic moduli, strength, 
fracture mechanims

Densification mechanism, bulk modulusLiu et al. J. Appl. Phys. 128, 035106 (2020)



• NAB glasses more crack resistance than NAS
• NAB glasses show ductility compared to NAS
• Shear strain taken up by B in NAB glasses
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Indentation tests

Liu et al. J. Appl. Phys. 128, 035106 (2020); doi: 10.1063/5.0013555



5-fold Si

4-fold B

5-fold Al



Laio, A., & Parrinello, M. (2002). PNAS, 99(20), 12562-12566
Barducci, A., Bussi, G., & Parrinello, M. (2008). PRL, 100(2), 020603.

cdr

Studying Crystallization in glasses: Metadynamics

𝑈 ҧ𝑟 → 𝑈 ҧ𝑟 + 𝑉𝐵𝐼𝐴𝑆(𝑠( ҧ𝑟))
Add bias potential in the explored space along a 

collective variable s

Reconstruct the Free Energy Surface (FES)

𝐹 𝑠 = −
𝛾

𝛾 − 1
𝑉 𝑠, 𝑡 − 𝑐(𝑡)

• Enhanced Sampling Techniques



Crystalline

Glass
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Collective Variable
X-ray diffraction:

Niu, H., Piaggi, P. M., Invernizzi, M., Parrinello, M. (2018). PNAS, 115(21), 5348-5352

Lithium Disilicate



Free Energy Surface of Lithium Disilicate 
Crystallization

Lodesani, F. et al. (2021). Phys. Rev. Mat., 5(7), 075602

Step mechanism: 
intermediate phase made of disordered layers

A B C D

𝑃𝑇(𝑅, 𝑡) = 𝑃𝑇′(𝑅)𝑒−(𝛽−𝛽′)𝐻 𝑅,𝑡Temperature rescaling FES at 1200 KFES at 1800 K

PES

A B C D
A B C D



Some Challenges remain:

Developing accurate Force-Fields (machine learning and empirical)

Time scale problem (too high quenching rates)

Methods and protocols for simulation of properties

Reactivity for large systems and for long time

44

Conclusions

Molecular Dynamics Simulations allow to study the structure, properties and 

behaviour of multicomponent oxide glasses.
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