

Modification of surface in chalcogenide glasses

Annie Pradel

Institut Charles Gerhardt Montpellier Équipe « Verres et Chalcogénures » Université Montpellier 2 Montpellier , France Chalcogen homologous of oxide glasses

 SiO_2 ; $GeO_2 \implies SiS(e)_2$; $GeS(e)_2$

Ia	1	[0						
1 H	IIa]										IIIa	IVa	Va	VIa	VIIa	2 He
3	4	T										5	6	7	8	9	10
	Be	l				[-	1	_	B	<u>C</u>	N			Ne
11	12	IIIb	IVb	Vb	VID	VIIB	VIIIb			Ib	IIP	13	14 C:	15	16	17	18
Na	Mg											AL	51		5		AF
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	TI	V	Cr	Mn	Fe	Co	INI	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	<mark>52</mark>	53	54
Rb	Sr	Y	Zr	Nb	Мо	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Ha	TI	Pb	BI	Po	At	Rn
87	88	89	104	105	106	107		•					•	•	•	•	•
Fr	Ra	Ac	Ung	Unp	Unh	Uns											
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	E\$	Fm	Md	No	Lr

Specific properties of chalcogenide glasses

Photoinduced phenomenaIon mobility

Diffusion under photons hy: Photoinduced phenomena

Photodissolution (« photodoping »)

Illumination of a chalcogenide film in contact with silver Rapid penetration of the metal into the semiconductor (Kostyshin (1966))

Typical features:

Large amount of Ag can be dissolved 30-40 at%, and even 57% in GeS_3

Rate of dissolution depends on chalcogenide composition (excess in chalcogen)

Application of photodissolution

Very sharp edges between doped and undoped regions

Local creation of pairs « electron-hole » + small diffusion length of free carriers

Hardly any lateral diffusion

Solubility of doped region in alkaline solvents much reduced

Local change in chemical composition

photoresists

etched gratings

Photomigration – Photodeposition

Phenomenon observed in highly doped chalcogenide (Ag-Ge-S(e)), Ag-As-S(e))

Small clusters or crystals 10nm in diameter and 1nm in thickness

Reversible process Annealing \rightarrow dissolution of the Ag clusters

Mechanism of photomigration-photodeposition

h⁺ *moves away from illuminated spot*

Point of view of chemist

Photodecomposition = decomposition of an oversaturated Ag solid solution

Under illumination the metastable system approaches equilibrium with excess Ag segregation.

Annealing at higher temperature allows Ag to dissolve again in the solid solution.

Application of photomigration-phodeposition

Increased reflectivity for Ag rich region Photoexpansion

Gratings/ microlenses

Optical memories Ag_x(Ge_{0.3}X_{0.7})_{100-x}, 110 mW/cm² X = S30 min

Au addition \rightarrow increase in the photosensitivity of photodeposition by two orders of magnitude (Au clusters = nucleation centers for Ag)

Diffusion under E and hy: PMC memories

« Programmable Metallization Cell Memory Devices »

Conductive atomic force microscopy (C-AFM)

- $\label{eq:Write-in} \begin{array}{l} \hline \mbox{Write-in} : \mbox{Sweeping over 500x500 nm}^2 \\ \mbox{and V}_W \mbox{= + 200 mV} \end{array}$
- **Erasure** : Sweeping over 500x500 nm² and $V_E = -250 \text{ mV}$

IR Transparency

IR Transparency

W.J. Pan, D. Furniss, H. Rowe, C.A. Miller, A. Loni, P. Sewell, T.M. Benson, A.B. Seddon; J. Non-Cryst. Sol. 353 (2007) 1302–1306.

Components for spatial interferometer

Darwin mission:

Detection of exo-planetary systems

High contrast and very faint angular separation between an earth-like planet and its parent star: **mid and thermal infrared [6-20 μm]**

Micro-components working between 6 and 20 µm

Requirement

Single mode waveguide

Design of component

Spectral domain [6 – 20 μm] divided in two sub-bands [6 – 11 μm] and [10 – 20 μm]

Considered structure with $n_c = 3,44 \pm 0,02$: rib waveguide

Walls with an angle comprised between 70 and 90 °

Substrate composition

Te₇₅Ge₁₅Ga₁₀ bulk glass [X. Zhang (Rennes)]

• transmission between [4-20 µm]

thermally stable

• high refractive index (at λ = 10.6 µm, n₁ = 3.3990 ± 0.0015)

Film etching

Core layer composition

Te₈₂Ge₁₈ amorphous film

• optimal composition: $n_2 = n_1 + 4.10^{-2}$

Photolithography

Reactive ion etching

positive resist S.18.18 2 µm in thickness

Optimization of etching gas

Reactive ion etching with optimized gas mixture

Optimized $CHF_3/O_2/Ar$ ratio = 59.5/10.5/30 $CHF_3 / O_2 = 85 / 15$ % Ar = 20

Rib waveguides [10 - 20 µm]

Surface modification

Use of intrinsic properties of chalcogenide

(photoinduced phenomenon + ion mobility)

Use of conventional techniques (**hot embossing, etching**)

Development of components based on intrinsic property of chalcogenide (IR transparency) My co-workers at ICGM Montpellier

E. Barthelemy, C. Vigreux, A. Piarristeguy, R. Escalier

For C-AFM measurements:

M. Ramonda (*LMCP*, *Montpellier*, *France*)

For contribution in the development and characterization of waveguides

M. Barillot (Thalès Alenia Space, Cannes, France), X. Zhang (LVC, Rennes, France), G. Parent (LEMTA, Nancy, France), J.E. Broquin (IMEP, Grenoble, France)

For financial support: European Space Agency (Project IODA2)

Fabrication de guides d'onde: Gravure

Waveguide fabrication by plasma etching

Waveguide fabrication by lift-off

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling, Optical Materials 30 (2008) 1560–1566.