Neutron and X-ray diffraction

Laurent Cormier

Institut de Minéralogie, Physique des Matériaux et Cosmochimie Université Pierre et Marie Curie – CNRS Paris, France

cormier@impmc.upmc.fr

Cargese School

Fig. 2.—X-ray diffraction pattern: (top) Pyrex-brand resistance glass; (center) vitreous silica; (bollom) cristobalite.

First structural studies by X-ray diffraction

Warren, B.E., 1934. The diffraction of X-rays in glass. Phys. Rev. B, 45, 657-661.

Warren, B.E., 1934. X-ray determination of the structure of glass. J. Am. Ceram. Soc., 17, 249-254.

Warren, B.E., Biscoe, J., 1938. Fourier analysis of X-ray patterns of sodasilica glass. J. Am. Ceram. Soc., 21, 259-265.

Structural model for covalent glasses

Zachariasen model (1932)

Continuous random network

Rules for glass formation

- 1. No O atoms bonded to more than 2 cations
- 2. Coordination cation is small (3,4)
- 3. O polyhedra are corner-shared (no edge- or face-sharing)
- 4. To obtain 3D network, at least 3 corners must be shared

Zachariasen, J. Am. Ceram. Soc., 54(1932)3841

Huang et al., Nano Lett. 12 (2012)1081

Bragg peaks and amorphous signal

Diffraction

Diffraction

Or simply use the term

PDF (Partial distribution function)

A diffraction experiment

Modulus scattering vector $\mathbf{k}_i = 2\pi/\lambda$ Scattering vector $\mathbf{Q} = \mathbf{k}_d - \mathbf{k}_i$ λ : wavelenth of the incident particule 2θ : diffraction angle

Elastic diffusion $k_i = 2\pi/\lambda = k_d = k$

 $Q = 2k\sin\theta$ $Q = 4 \pi \sin\theta / \lambda$

 \triangle Q sometimes noted k (mainly for X-ray)

Fonctions in Q-space

D.A. Keen, A comparison of various commonly used correlation functions for describing total scattering, J. Appl. Cryst. 34 172-177 (2001).

 $Q_1.d \simeq 2-3$ => arrangements of network-forming motifs on anintermediate range (first sharp diffraction peak) $Q_2.d \simeq 4.6-4.9$ => size of the local network-forming motifs $Q_3.d \simeq 7.7-8.9$ => nearest-neighbour separation

Note : some low-Q features are not present for some classes of glasses (*e.g.* Q_1 and Q_2 are absent in metallic glasses) or are not observable for some diffraction methods (*e.g.* Q_2 is present in neutron diffraction data for SiO₂ but absent in the X-ray diffraction data).

 $Q_1.d \simeq 2-3$ => arrangements of network-forming motifs on anintermediate range (first sharp diffraction peak) $Q_2.d \simeq 4.6-4.9$ => size of the local network-forming motifs $Q_3.d \simeq 7.7-8.9$ => nearest-neighbour separation

A dense random packing structure (typical to metallic glasses)

a tetravalent structure (e.g. a-Si)

a 4:2 structure (e.g., a- GeSe2)

Filled circles in (b) and (c) are fourcoordinated atoms, filled squares are twocoordinated atoms, and open circles are voids

Correlations between, Q3 and the reduced volume

Ehrenfest relation
$$Q = \frac{4\pi \sin \theta_m}{\lambda} = 1.23 \left(\frac{2\pi}{d}\right)$$

 $\begin{pmatrix} \frac{2\pi}{d} \end{pmatrix}$ The position of this peak is associated with the principal diffraction peak (Q3). As a consequence, the position Q3 is inversely proportional to the mean atomic spacing and the third power of Q3 scales $Qd/2\pi = 1.23$

Correlations between, Q³ and the reduced volume

convenient to understand the relative volume (density) change with pressure

Low-Q features – First sharp diffraction peak Q₁

- > Important and sometimes anomalous changes with composition, temperature or pressure
- > Associated with the presence of medium range order $Q_1 \sim 2\pi/d$
- \blacktriangleright Not associated with precise features in r

Various interpretation

- > Quasi-crystalline organization, quasi-Bragg peak or quasi-periodic arrangement
- Correlations between clusters and voids

group-IV (GexSe1-x, SixSe1-x) and group-V (AsxSe1-x, PxSe1-x alloys) => strong variation in position and intensity

NFC : network-forming cations

chainlike group-VI alloy TexSe1-x => no dramatic evolution Bychkov et al., Phys. R

Bychkov et al., Phys. Rev. B 72 (2005) 172107

random distribution of the NFC-related structural units

network formation by NFC-related structural units homopolar NFC-NFC bonds Ge and Si no longer NFC but depolymerize the network

Faber-Ziman formalism

Partial pair distribution
Partial structure factor function (PPDF)

$$F(Q) = \sum_{\alpha,\beta \ge \alpha} (2 - \delta_{\alpha\beta}) c_{\alpha} c_{\beta} c_{\alpha} b_{\beta} \left[4\pi \rho_0 \int r^2 (g_{\alpha\beta}(r) - 1) \frac{\sin Qr}{Qr} dr \right]$$
Atomic fraction
of component α Neutron scattering length
or X-ray form factor f(Q)

System of *n* chemical species

n (*n*+1)/2 independent PPDF
$$g_{\alpha\beta}(r)$$

ρ0 (atome Å⁻³) is the average atomic density which can be obtained from the macroscopic density d(g cm⁻³): $\rho_0 = \frac{Nd}{A \times 10^{24}}$ A = Atomic mass of the sample

Fourier transform

$$G(r) = \frac{2}{p} \int_0^{Q_{\text{max}}} Q(S(Q) - 1) M(Q) \sin(rQ) dQ$$

M(Q): modification function

 \Rightarrow limit effect of truncation of the data

Fonctions dans l'espace réel

✓ Pair correlation function G(r) or differential correlation function D(r)

Information from the correlation function

Lead silicate glasses

Kohara (2010) PbO_4 tetrahedra are in majority, al- though PbO_3 and PbO_5 Takahashi (2005) PbO_3+_3 unit is dominant

Coordination Numbers Around Pb Atoms in $xPbO \cdot (100-x)SiO_2$ Glasses by XRD

Samples	r _{Pb-O} /nm	$N_{ m Pb-O}$	r _{Pb-Pb} (nm)	N _{Pb-Pb} (nm)
$25PbO \cdot 75SiO_2$	0.240, 0.280	3.0+3.0	0.386	
$33PbO \cdot 66SiO_2$	0.240, 0.280	3.0 + 3.0	0.386	
$50PbO \cdot 50SiO_2$	0.237, 0.280	3.0 + 1.2	0.386	
$66PbO \cdot 33SiO_2$	0.233	3.3	0.385	6.3
$89 PbO \cdot 11 SiO_2$	0.233	3.2	0.383	6.0

-, not detected.

Kohara et al., Phys. Rev. B 82 (2010) 134209 Takahashi et al., J. Am. Ceram. Soc., 88 (2005) 1591

Fourier transform

$$G(r) = \frac{2}{p} \int_0^{Q_{\text{max}}} Q(S(Q) - 1) M(Q) \sin(rQ) dQ$$

High resolution diffraction

High resolution diffraction

Vitreous P_2O_5 P 2s²2p³

Possibility to distinguish O linked with P O_T: terminal oxygen = end of chain O_B: bridging oxygen

Hoppe et al., Sol. St. Comm., 115(2000)559

Better to use neutron or X-rays?

Use both !

They are complementary

Comparison between neutron and X-ray diffraction

X-ray

Interaction with electronic cloud

f(Q) form factor

✓ Strong variation of scattered intensity with θ

Neutrons

Interaction with the nucleus

b neutron scattering length

 \checkmark b not a monotonous function of Z

Comparison between neutron and X-ray diffraction

X-ray

- f(Q) form factor
- \checkmark information on high Z elements

✓ weak contrast for elements with close Z

Neutrons

b neutron scattering length

- \checkmark b independent of Q = constant
- \Rightarrow light elements are visible (H, Li, N, O, etc)

 \Rightarrow possibility to distinguish elements with close Z

 \checkmark b vary among isotopes of the same elment

Comparaison entre diffraction des neutrons et rayons X

Facteur de structure S(Q) : somme des facteurs de structure partiels, $S_{\alpha\beta}(Q)$: $S(Q) = \sum_{\alpha,\beta} W_{\alpha\beta}(Q) S_{\alpha\beta}(Q)$

Facteurs pondérants

RX

Neutrons

$$W_{\alpha\beta}(Q) = c_{\alpha}c_{\beta}f_{\alpha}(Q,E)f_{\beta}(Q,E)(2-\delta_{\alpha\beta}) \qquad \qquad W_{\alpha\beta}(Q) = c_{\alpha}c_{\beta}b_{\alpha}b_{\beta}(2-\delta_{\alpha\beta})$$

Fonction de corrélation

RX

Neutrons

$$G(r) = \sum_{\alpha,\beta \ge \alpha} TF(W_{\alpha\beta}) \otimes g_{\alpha\beta}(r)$$

$$G(r) = \sum_{\alpha,\beta \geq \alpha} W_{\alpha\beta} g_{\alpha\beta}(r)$$

Fonctions de distribution de paires partielles : $g_{\alpha\beta}(\mathbf{r})$

Neutron diffraction for silica glass: radial distribution function

1000

Overlapping of PPDF $G_{\alpha\beta}(\mathbf{r})$

Glass SiO₂

Fig.4. The pair function distribution curves for SiO₂. A is the measured curve. The computed contributions are given by: B, Si-O; C, O-O; D, Si-Si; E, Si-2nd O; F, O-2nd O; G, Si-2nd Si.

R. L. Mozzi, Warren, B.E., J. Appl. Cryst. 2, 164 (1969)

Extract information from diffraction data: numerical modelling

Classical Molecular Dynamics Ab inito Molecular Dynamics RMC and EPSR (Monte Carlo methods)

Pair distribution function g(r)

Measures the probability that two atoms are separated by a distance r

- $\checkmark Structural test of the MD models$
- ✓ Improvement of potentials

Comparison experiment / simulation

Always good agreement in publication !

$$R_{c} = \left(\frac{\sum_{i} \left[T_{\exp}(r_{i}) - T_{sim}(r_{i})\right]^{2}}{\sum_{i} T_{\exp}^{2}(r_{i})}\right)^{\frac{1}{2}}$$

Wright, J. Non-Cryst. Solids, 159 (1993)264

Lead silicate glasses

RMC modeling => quantitative fit of the experimental data

34mol% PbO : large fraction of PbOx polyhedra do not participate in network formation non-network PbOx unit (isolated short chains or complex units) = yellow points

Lead silicate glasses

inhomogeneous lead distribution Peak at $Q_p=0.4$ Å⁻¹ => distance $2p/Q_p\sim15$ Å

34mol% PbO : large fraction of PbOx polyhedra do not participate in network formation non-network PbOx unit (isolated short chains or complex units) = yellow points

Lead silicate glasses : a binary network-former glass

34 mol% PbO

65 mol% PbO

PbO-SiO₂ glass as a "binary networkformer glass" with large amounts of free volume (voids)

A new order for metallic glasses

Random sphere packing with canonical polyhedra

Also medium range order (with 5-fold symmetry) X-ray diffraction + RMC modeling

Sheng et al., Nature, 439(2006)419

Extract information from diffraction data: experimental contrast methods

System of *n* chemical species

Number of independent $S_{\alpha\beta}(Q)$: n(n+1)/2

$$F(Q) = \sum_{a,b} c_a c_b b_a b_b \left[S_{ab}(Q) - 1 \right]$$

We need N = n(n+1)/2different experiments !

Difference method

Neutron: isotopic substitution

X-ray: anmalous diffraction

First difference method

M = substituted element

$$F_{\exp 1}(Q) = \sum_{a} c_{a} b_{a}^{2} + \sum_{a,b\neq M} c_{a} c_{b} b_{a} b_{b} (S_{ab}(Q) - 1) + \sum_{M,a} c_{a} c_{M} b_{a} b_{M1} (S_{Ma}(Q) - 1)$$
Sample 1
$$F_{\exp 2}(Q) = \sum_{a} c_{a} b_{a}^{2} + \sum_{a,b\neq M} c_{a} c_{b} b_{a} b_{b} (S_{ab}(Q) - 1) + \sum_{M,a} c_{a} c_{M} b_{a} b_{M2} (S_{Ma}(Q) - 1)$$
Sample 2

Cormier et al., Chem. Geol. 174(2001)349

First difference method

M = substituted element

$$F_{\exp 1}(Q) = \sum_{a} c_{a} b_{a}^{2} + \sum_{a,b\neq M} c_{a} c_{b} b_{a} b_{b} (S_{ab}(Q) - 1) + \sum_{M,a} c_{a} c_{M} b_{a} b_{M1} (S_{Ma}(Q) - 1)$$
Sample 1

$$F_{\exp 2}(Q) = \sum_{a} c_{a} b_{a}^{2} + \sum_{a,b\neq M} c_{a} c_{b} b_{a} b_{b} (S_{ab}(Q) - 1) + \sum_{M,a} c_{a} c_{M} b_{a} b_{M2} (S_{Ma}(Q) - 1)$$
Sample 2

$$\Delta F(Q) = F_{\exp 1}(Q) - F_{\exp 2}(Q)$$

$$\Delta F(Q) = \sum_{a\neq M} A(S_{Ma}(Q) - 1) + B(S_{MM}(Q) - 1)$$

with
$$A = 2c_a c_M b_a (b_{M1} - b_{M2})$$
 $B = c_M^2 (b_{M1}^2 - b_{M2}^2)$

For a binary system with species α, β :

$$\overline{b}^{2}[S(Q)-1] = \sum_{a,b} c_{a}c_{b}b_{a}b_{b}[S_{ab}(Q)-1]$$

$$F(Q)$$

Matrix

$$\begin{pmatrix} F_{\exp 1}(Q) \\ F_{\exp 2}(Q) \\ F_{\exp 3}(Q) \end{pmatrix} = \begin{pmatrix} c_a^2 b_{a1}^2 & c_b^2 b_{b1}^2 & c_a c_b b_{a1} b_{b1} \\ c_a^2 b_{a2}^2 & c_b^2 b_{b2}^2 & c_a c_b b_{a2} b_{b2} \\ c_a^2 b_{a3}^2 & c_b^2 b_{b3}^2 & c_a c_b b_{a3} b_{b3} \end{pmatrix} \begin{pmatrix} F_{aa}(Q) \\ F_{bb}(Q) \\ F_{ab}(Q) \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} \begin{pmatrix} F_{aa}(Q) \\ F_{bb}(Q) \\ F_{ab}(Q) \end{pmatrix}$$

Fixed composition: constant c_{α} , c_{β} Isotopes with a good contrast $b_{\alpha i}$: scattering length for isotope *i* of species α

Matrix inversion allows the determination of partial structure factors $S_{ab}(Q)$:

$$\begin{bmatrix} F_{exp}(Q) \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} F_{ab}(Q) \end{bmatrix}$$
$$\begin{bmatrix} F_{ab}(Q) \end{bmatrix} = \begin{bmatrix} A \end{bmatrix}^{-1} \begin{bmatrix} F_{exp}(Q) \end{bmatrix}$$

Possibility to do isomorphic substitution:

Two different chemical species with similar radius (same place within the structure ?) but different b

From Salmon et al.

Homopolar bonds in chalcogenide glasses

Example of glassy GeSe₂

Measure total structure factors for three samples with different isotopic enrichments e.g. ^NGe^NSe₂, ⁷⁰Ge^NSe₂, ⁷³Ge⁷⁶Se₂

Observe:

Ge-Ge and Se-Se homopolar bonds

Egde- and corner-sharing Ge(Se_{1/2})₄ tetrahedra

Petri et al., Phys. Rev. Lett.84(2000)2413

Ti : TiK₂Si₂O₇ glass

Ti : TiK₂Si₂O₇ glass

Second difference method

M = substituted element

$$\Delta I(Q) = \sum_{a \neq M} 2c_a c_b b_a (b_M - {}^{mix} b_M) (S_{Ma}(Q) - 1)$$
$$c_M^2 (b_M^2 - {}^{mix} b_M^2) (S_{MM}(Q) - 1)$$

$$\Delta I'(Q) = \sum_{\substack{a \neq M}} 2c_a c_b b_a \binom{mix}{mix} b_M - b'_M (S_{Ma}(Q) - 1)$$
$$c_M^2 \binom{mix}{mix} b_M^2 - b'_M^2 (S_{MM}(Q) - 1)$$

$$b_M - {}^{mix}b_M = {}^{mix}b_M - b'_M$$

$$2\Delta(\Delta I(Q)) = c_M^2 \left[b_M^2 - b_M'^2 \right] \left(S_{MM}(Q) - 1 \right)$$

Cormier et al., Chem. Geol. 174, 349 (2001)

Second difference functions for $Ca_2NiSi_3O_9 =$ Ni-Ni distances

Distribution of non-network formers

Second difference functions - cation-cation distribution

Distribution of non-network formers

Second difference functions - cation-cation distribution

Cormier et al., Chem. Geol., 174 (2001) 349

Random modified network (Greaves)

Separation regions enriched in network formers and region enriched in network modifiers

Zones enriched with nonnetwork forming cations

Silicate network (or network formers)

Greaves, J. Non-Cryst. Solids 71(1985)203

Anomalous scattering (X-ray diffraction)

$$S(Q) = \sum_{a,b \ge a} W_{ab}(Q) S_{ab}(Q)$$

$$W_{ab}(Q) = \frac{c_a c_b f_a(Q, E) f_b(Q, E)}{\overline{f(Q, E)}^2} \left(2 - d_{ab}\right)$$

Atomic form factor: $f(Q,E) = f_0(Q) + f'(E) + i f''(E)$

f' and f'' strong variation near the absorption edge of a given element

f' and f'' linked by the Kramer-Kronig relation :

$$\mathbf{\omega} = \frac{2}{\pi} \int_0^\infty \frac{\omega' f''(\omega') \partial \omega'}{\omega^2 - \omega'^2}$$

Anomalous scattering (X-ray diffraction)

2 experiments at 2 different energies (different λ):
at the absorption edge (λ1 or λ2) and far from the edge (λ3)

Energie des rayons X (eV)

1 sample is needed

\bigwedge Domain in Q defined by Q = 4 π sin θ / λ In practice, only interesting for element above ~Fe otherwise Q-range too small

Anomalous scattering (X-ray diffraction)

Hosokawa et al., Phys. Rev. B, 84(2011)014201

Summary

Short and medium range order in the same experiments
⇒ structural models can be generated
⇒ or comparison with MD simulations

HP/HT structural transformations

contrast techniques to investigate specific elements

Analysis of Total Scattering Data

Bibliography

Squires, G. L. *Introduction to the theory of thermal neutron scattering*, Cambridge University Press: Cambridge (1978).

A.C. Wright, *The structure of amorphous solids by x-ray and neutron diffraction*, Advances in Structure Research by Diffraction Methods 5, 1 (1974).

Chieux, P. In *Neutron diffraction*, Dachs, H., Ed., Springer-Verlag: Berlin, (1978).

L. Cormier, *La structure des verres étudiée par diffraction des neutrons*, J. Phys. IV, 111, 187-210 (2003).

H. E. Fischer, A. C. Barnes, P. S. Salmon, *Neutron and x-ray diffraction studies of liquids and glasses*, Reports on Progress in Physics 69, 233-299 (2006).

X-ray diffraction source

Neutron diffraction

Laboratory diffractometer

Ex: Empyrean Panalytical (IMPMC, Paris) Source: Ag λ =0.56 Å Q-range: 0.5-21.5 Å⁻¹

Spallation source (pulsed source)

Ex: ISIS (UK), ESS (Sweden, 2020?)

Nuclear reactor

Ex: LLB (France), ILL (Grenoble, european source) 7C2 diffractomter at LLB

Synchrotron

Ex: ESRF (Grenoble) Diffraction, anomalous scattering, temperature, pressure etc ... Q range up to 50 Å⁻¹