

Nucléation - Cristallisation Ordre / Désordre : point de vue de la RMN

D. Massiot, Thibault Charpentier

CEMHTI UPR3079 CNRS, Orléans France CEA / IRAMIS / SIS2M / LSDRM

THE JOURNAL OF PHYSICAL CHEMISTRY C

Atomic Arrangement in Two-Dimensional Silica: From Crystalline to Vitreous Structures

Leonid Lichtenstein, Markus Heyde,* and Hans-Joachim Freund

Direct Imaging of a Two-Dimensional Silica Glass on Graphene

Pinshane Y. Huang,[†]■ Simon Kurasch,[‡]■ Anchal Srivastava,^{\$,0} Viera Skakalova,^{\$,||} Jani Kotakoski,^{||,⊥} Arkady V. Krasheninnikov,^{±,1} Robert Hovden,[†] Qingyun Mao,[†] Jannik C. Meyer,^{‡,||} Jurgen Smet,^{\$} David A. Muller,^{*,†,□} and Ute Kaiser^{*,‡} Vol 464 25 March 2010 doi:10.1038/nature08879

nature

LETTERS

nature

Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy

Ondrej L. Krivanek¹, Matthew F. Chisholm², Valeria Nicolosi³, Timothy J. Pennycook^{2,4}, George J. Corbin¹, Niklas Dellby¹, Matthew F. Murfitt¹, Christopher S. Own¹, Zoltan S. Szilagyi¹, Mark P. Oxley^{2,4}, Sokrates T. Pantelides^{2,4} & Stephen J. Pennycook^{2,4}

Glass structure at different scales

²⁹Si - Silica based materials

D.Massiot, F.Fayon, M.Deschamps, S.Cadars, P.Florian, V.Montouillout, N.Pellerin, J.Hiet, A.Rakhmatullin, C.Bessada ' Detection and use of small J couplings in solid state NMR experiments.' Comptes Rendus de Chimie 13 117-129 2010

SiO₂-Li₂O

Ananthanarayanan, A., Kothiyal, G.P., Montagne, L., Revel, B. Journal of Solid State Chemistry, 183(6):1416-1422 2010 Journal of Solid State Chemistry, 183(1): 120-127 2010

Yoshiokaite – 50.23

Calculs DFT de paramètres RMN en conditions limites periodiques

S.Cadars, J.D.Epping, S.Acharya, N.Belman, Y.Golan, B.F.Chmelka "Positional and Electronic Order in Semiconducting ZnSe Nanoparticles" Phys. Rev. Lett. 103 136802 2009.

Transmission Electron Microscopy

L.Martel, M.Allix, F.Millot, V.Sarou-Kanian, E.Véron, S.Ory, D.Massiot, M.Deschamps "Controlling the size of nanodomains in calcium aluminosilicate glasses » J. Phys. Chem. C 115 18935–18945 **2011**

- Al is in a more polymerized environment than Si
- The glass is inhomogeneous at the nano-meter scale...
- AlO₄ & AlO₅ are bound to chemically similar SiO₄ species

Julien Hiet PhD

Glass structure at different scales

 \bigcirc

Rotation à l'angle magique

Dipolar Chem. Shift Quad 1st and 2nd

D.Massiot, F.Fayon, M.Deschamps, S.Cadars, P.Florian, V.Montouillout, N.Pellerin, J.Hiet, A.Rakhmatullin, C.Bessada 'Detection and use of small J couplings in solid state NMR experiments.' <u>Comptes Rendus de Chimie</u> 13 117-129 **2010**

≻Can be used to generate homo- or heteronuclear correlations...

Cembb Homonuclear J-Correlation and J-Spectroscopy

• Narrow peak at ~150 ppm with large ${}^{1}J(P-P) \sim 370 \text{ Hz}$: possibly — P = P ?

La résolution peut venir d'autre chose que du déplacement chimique

F. Fayon, C. Bessada, J.P. Coutures, D. Massiot, "High Resolution Double Quantum 31P NMR Study of intermediate Range Order in Crystalline and Glass Lead Phosphates.", Inorg. Chem., 38 pp5212-5218 (1999).

Through-bond correlation

Heteronuclear Multiple Quantum Correlation (HMQC)

$$\frac{\hbar^2}{2} \sum_{i} \sum_{j \neq i} \gamma_i \gamma_j \vec{l}_i \left(\mathbf{D}_{ij} + \mathbf{J}_{ij} \right) \vec{l}_j$$

NMR of neighboring nuclear spins (Si-O⁻ Na⁺)

Glass structure at different scales

Chemical Disorder in a Structural Order

Gehlenite Ca₂Al₂SiO₇

P.Florian, E.Veron, T.F.G.Green, J.R.Yates, D.Massiot Chem. Mater. 24 4068-4079 2012

Chemical Disorder in a Structural Order

P.Florian, E.Veron, T.F.G.Green, J.R.Yates, D.Massiot Chem. Mater. 24 4068–4079 2012

P.Florian, E.Veron, T.F.G.Green, J.R.Yates, D.Massiot Chem. Mater. 24 4068–4079 2012

MATERIALS

P.Florian, E.Veron, T.F.G.Green, J.R.Yates, D.Massiot Chem. Mater. 24 4068–4079 2012

GIPAW: (Si,Al)-O-(Si,Al) J scalar coupling

- Experimental J(Al-Si):T1 ~ 1.5 3.5 Hz, T2 ~ 4.0 Hz
- Experimental J(Si-Si) ~ 2.8 Hz ± 0.2 Hz
- J is (again) correlated to the bond-angle
- \sim No obvious differences between $J(^{27}AI)$ or $J(^{29}Si)$
- Slope close to the one obtained on clusters (3.41 for 130°-170° range)

³¹P MAS Glasses

Cembt NMR ³¹P MAS istrope ou Statique Anisotrope

²⁹Si MAS NMR

$Q^{(n)}$: Si(OSi)_n(O⁻)_(4-n)

29 Si MAS NMR: Direct access to silicon Q⁽ⁿ⁾ speciation

NMR peaks reflective of a Gaussian distribution of δ_{iso} (I=1/2) Note: $\delta_{iso} = -(\sigma_{ref} - \sigma_{iso})$

²⁹Si MAS NMR: Direct access to silicon Q⁽ⁿ⁾ speciation

Chain length distribution? Chemical disorder Chain geometries? Topological or geometrical disorder

1 to 3 tetraedra $-{}^{31}P$

-30

-40

Phosphate Glass structure ³¹P MAS

Chemical and Geometrical Order

F.Fayon, C.Roiland, L.Emsley, D.Massiot, Journal of Magnetic Resonance 179 50-58 (2006)

J.Hiet, M.Deschamps, N.Pellerin, F.Fayon, D.Massiot "Probing chemical disorder in glasses using silicon-29 NMR spectral editing" Phys. Chem. Chem. Phys. 11 6935–6940 2009

(Y/La) Complex Glasses

F.Fayon, C.Duée, T.Poumeyrol, M.Allix, D.Massiot, J. Phys. Chem. 2013

Cempt Probing phosphate clustering : TEM - XRD

Chemical contrast in TEM – XRD of amorphous materials : Z contrast

Ca phosphate vs Ca silicate : very weak Z-contrast

sample under the beam

Solid-state NMR

Spin Counting: Ca₄P₂O₉

Statistical model (A. Pines *et al.*)

F.Fayon, C.Duée, T.Poumeyrol, M.Allix, D.Massiot, J. Phys. Chem. 2013

F.Fayon, C.Duée, T.Poumeyrol, M.Allix, D.Massiot, J. Phys. Chem. 2013

Glass structure at different scales

Merci de votre attention

Avez vous des questions ???

Access High Field NMR (750 & 850 MHz) http://www.tgir-rmn.org/