

Nucléation et cristallisation des matériaux vitreux

Comportement mécanique

J-C. Sangleboeuf LARMAUR ERL 6274

Nucléation – cristallisation - mécaniquerennes

1953 – S.D. Stookey – Corning Glass Works

Annealing of a lithium disilicate glass with silver particles. He overheated the glass to about 900°C instead of 600°C Instead of a melted pool of glass, the astonished Stookey observed a white material that had not changed shape.

He then accidently dropped the piece on the floor, but it did not shatter, contrary to what might normally have been expected from a piece of glass!

He was surprised by the unusal toughness of that material.

Stookey had accidently created the first glass-ceramic, denominated Fotoceram.

vitreux,

Nucléation et cristallisation des matériaux

matériaux

Nucléation et cristallisation des

Mécanique des matériaux fragiles

- rappels
- propriétés et microstructure
- méthodes expérimentales

Cristallisation et élasticité

Cristallisation et résistance à la rupture – ténacité

-> à température ambiante

5

Ténacité et poutres entaillées

Single Edge Notched Beam->SEPB

Chevron Notched Beam

Indentation + 3PB-4PB-BF

Short Rod Specimen

D

Semi Circular Beam

Centrally Cracked Brazilian Disk ₆

Cristallisation et Elasticité

Elasticité et modèle d'homogénéisation RENNES

Importance du contraste mécanique

Propagation de fissure et microstructure

Micrographs showing (a) fracture surface of MS40G heat-treated at 1100°C for 2 h and (b) microscopic crack deflection across the material.

	As cast	HT 900°C	HT 110°C
K _{ind} MPa√m	0,9	1,0	1,6
BS MPa	101	134	184
CS MPa		500	700

Bending Strength Compressive Strength

Nucléation et cristallisation des matériaux vitreux, 13-17

Wu JACS 2006

Propagation de fissure et microstructure

13-17

Nucléation et cristallisation des matériaux vitreux,

SEM images of the crack tips; the samples were etched with 3% hydrofluoric acid for 10 s; (A) leucite glass ceramic (B) lithium disilicate glass-ceramic (C) apatite glass-ceramic.

	K _{tip} d (MPa√m)	K _{SEVNB} (MPa√m)
A	0,55/0,58	1,09
В	1,28/1,19	2,7
С	0,58/0,60	0,7

Appel et al, J. Mech. Beh. Bio. Mater. 2008

(a) Dependence of flexural strength on crystalline volume fraction for the 1.5N1.5C3S + 4P glass-ceramic with a constant 13 lm crystal size and (b) optical micrographs of the corresponding microstructures for 15%, 34%, 60% and fully crystallized samples.

Peitl et al, Acta Biomaterialia 8 (2012) 321-332

Nucléation et cristallisation des matériaux vitreux, 13-17

Cristallisation et rupture

13-1

Nucléation et cristallisation des matériaux vitreux,

Optical micrographs of the fracture surface of (a) glass and (b) 34% partially crystallized and (c) fully crystallized 1.5N1.5C3S + 4P glass-ceramic. Arrows in (b) show crack propagation in the glass matrix being deflected by crystals due to the radial tensile residual stress field. Direction of fracture was from top to bottom.

Pontage?

Importance de :

- l'adhésion particule/matrice
- des α
- des E

Rôle des contraintes résiduelles

Contrainte résiduelles et rupture

Crystallized phases, thermal expansion coefficient, bending strength and fracture toughness of glass-ceramics

Sample	Applied heat treatment/°C/h	Crystallized phases	Thermal expansion coefficient/K	Bending strength/MPa	Fracture toughness/MPa m ^{1/2}
Z0	720/1 + 820/2	β-Quartz	0.4×10^{-7}	118	1.6
Z5	690/1 + 820/2	β-Quartz, β-Spodumene	0.9×10^{-7}	124	1.9
Z10	660/1 + 820/2	β-Quartz, β-spodumene, willemite	3.8×10^{-7}	135	2.1
Z15	620/1 + 820/2	β-Spodumene, willemite	5.3×10^{-7}	125	1.9

Substitution de Al₂0₃ par ZnO

UNIVERSITÉ DE

βquartz $α_q ≈ 0-1.10^{-7} K^{-1}$ βspodumène $α_s ≈ 9.10^{-7} K^{-1}$ Willemite $α_w ≈ 15.10^{-7} K^{-1}$

BS7 car $\Im \sigma_{res}$ internes liées au désaccord entre solution solide β quartz et matrice verre par précipitation β s et w.

Effet limité par la taille grain Z0 Z5 100-200nm Z10 1-2µm Z15 3-5µm

SEM photographs of Z0, Z5, Z10 and Z15 samples heat-treated at 820 $^\circ\text{C}$ for 2 h.

Hu et al, Thermochimica Acta (2005)

Ténacité et cristallisation

Ténacité et cristallisation

13-17 mai,

Nucléation et cristallisation des matériaux vitreux,

The increase of toughness with platelet size follows the square-root relationship predicted by the Becher model up to platelet diameters of about 10 mm (R^2 . 0.996). A drop in toughness is noted for Macor, with larger platelets and slightly different chemistry and microstructure.

$$K_{\rm Ic} = K_{\rm Ic}^{(g)} + (A_{\rm bg}\tau_{\rm f}Ed/2(1-v^2))^{1/2}$$

Toughness of the felspathic porcelains generally increases with %vol. crystallinity (R^2 . 0:845). Variations in chemistry, glass frits and microstructure contribute to scatter.

 $K_{ic}^{(g)}$ is the fracture toughness of the base glass, A_{bg} is the areal fraction of bridging grains, τ_f is the frictional sliding stress, d is a grain size parameter, and E and v are Young's modulus and Poisson's ratio.

Anisotropie et fissuration

Fracture toughness (K_{Ic}) of glass A extruded (or heat treated) at 824°C and subsequently crystallized at 1000°C for 30 min

Glass A	Oriented cut center	extr. axis	Oriented cut near surface	extr. axis	Oriented cut	⊥ extr. axis Randomly oriented
Hardness H _v	3.8 ± 0.3		3.8 ± 0.3		3.7 ± 0.2	3.9 ± 0.1
Crack length (µm)	crack \perp 58 + 3	crack $\ $	crack \perp	$\frac{\text{crack}}{120+2}$	58 ± 4	69 ± 2
$K_{\rm Ic}$ (MPa m ^{1/2})	1.72 ± 0.21	0.77 ± 0.14	2.60 ± 0.46	0.57 ± 0.16	1.66 ± 0.25	1.32 ± 0.11
a 1		BI (extrusion oxis	extrusion axis

e

Nucléation

Vickers indentation on the surface area of oriented mica glass-ceramic of composition A, cut parallel to the extrusion direction.

Habelitz et al. Mat. Sc. Eng. A307 (2001)

Extruded mica glass-ceramic

Deflected radial crack from Vickers indentation on the surface area of oriented mica glass-ceramic of composition A, sample cut parallel to the extrusion axis. Crack initiated perpendicular to the extrusion axis.

Ivoclar Vivadent/IPS Empress 2 Heta pressed Lithium disilicate glass ceramic

> Note the change in direction of radial cracks emanated from the impression corners.

Gonzaga et al, Dent. Mat. (2009)

(a) Schematic representation of the alignment of needle-like lithium disilicate particles in glass–ceramic E2 with disk-shaped specimen. The larger arrow indicates the direction of pressing and small arrows indicate the possible pressing force directions that resulted in particle alignment; (b–d) optical micrographs of the Vickers impressions made in the positions indicated with letters in (a).

Résumé

Nucléation et cristallisati

Elasticité et homogénéisation :

- Prise en compte de la morphologie
- Prise en compte de l'anisotropie

Fissuration – Rupture :

- Rôle important de la microstructure
- > déviation de fissure
- > défaut initial
- Rôle des contraintes résiduelles
- Rôle de l'anisotropie

