DE LA RECHERCHE À L'INDUSTRIE

Numerical simulation of vitrification processes: Modeling of air bubbling in molten glass

Workshop on gases and bubbles in molten glasses <u>E. Sauvage</u>

CEA-Marcoule, BP 17171, 30207 Bagnols sur Cèze, France

13 MAY 2016

www.cea.fr

Modeling of air bubbling in molten glass

Summary

- 1- Vitrification technology presentation
- 2- Semi empirical approach
 2-a Model presentation
 2-b Interaction with mechanical stirring
 2-c Bubbles columns interaction
- **3- VOF simulation**

DE LA RECHERCHE À L'INDUSTRIE

CEA / AREVA Joint Vitrification Laboratory (LCV)

Areva

La Hague (AREVA) Industrial plant

Marcoule (CEA) Research center

Commercial and industrial operator of 3 vitrification plants

Current pilot of vitrification process CEA Marcoule (inactive cell)

Cold Crucible

Melter

French Atomic Energy Commission (CEA)

Confinement Research Engineering Department

Waste Confinement and Vitrification Service

VITRIFICATION PROCESS OPERATED IN THE LA HAGUE PLANT

Industrial French Vitrification Design / A two-step vitrification process

- Solution fed to a rotary calciner (evaporating, drying and calcining functions)
- Glass frit fed separately
- Melter fed continuously / poured batchwise
- Off-gas treatment unit (recycling of particulate material and purification of the gas streams)

VITRIFICATION PROCESS OPERATED IN THE LA HAGUE PLANT

Furnaces technology

Average chemical compositions for R7T7 glass produced in the industrial facilities at La Hague

Oxides	Average composition of industrial glass (w %)
SiO2	45,6
B2O3	14,1
AI2O3	4,7
Na2O	9,9
CaO	4
Fe2O3	1,1
NiO	0,1
Cr2O3	0,1
P2O5	0,2
Li2O	2
ZnO	2,5
Oxides (PF+Zr+actinides) + Suspension of fines Actinide oxides	17
SiO2+B2O3+Al2O3	64,4

Characteristics:

- Molten glass mass	400 kg	270 kg	Inside view in CCIM
- Max throughput	36 kg/h	25 kg/h	
- Max temperature	>1400°C	1100°C	
- Mechanical stirring	yes	yes	
- Gas bubbling	yes	yes	
- Approx. life time	>2 years	0.5 year	
- Number in LH plant	1 Work	5	

DE LA RECHERCHE À L'INDUSTRIE

2 Bubbling characterization and modelisation

Air bubbling overview

Experiment in hydraulic similirarity with silicon oil

R. RIVA (CEA / Grenoble)

Visualisations rapides 250 im/s 1 bullage Qair = 50 Nl/h à Qair = 1000 Nl/h Viscosité = 3890 cSt

- Oil with the same kinematic viscosity as glass (at a given temperature)
- Explored parameters: liquid viscosity, air flow rate, hole diameter of the injector...

Adimensionnals numbers for similirarity

		Hot glass	Oil
Mo	$g\mu_L^4/ ho_L\sigma^3$	1321	170616
$log_{10} (Mo)$		$3,\!12$	$5,\!23$
Ga	$ ho_L^2 g d_0^3/\mu_L^2$	0,0475	0,0475
Re	$ ho_L V_g d_0/\mu_L$	63,2	63,2
$ ho^*$	$ ho_G/ ho_L$	$8,\!55.10^{-5}$	$1,23.10^{-3}$
μ^*	μ_G/μ_L	$5,\!26.10^{-6}$	$5,12.10^{-6}$

DE LA RECHERCHE À L'INDUSTRI

2-a « One mesh » model

= T(

,

2-a « One mesh » model

= experimental correlation = f(

Jamialahmadi, M. et al, Study of Bubble Formation Under Constant Flow Conditions, Chemical Engineering Research and Design, 2001, 79, 523-532

$$d_{e} = d_{0} \left(\frac{5}{Bd^{1,08}} + 9,261 \frac{Fr_{0,36}^{0,36}}{Ga^{0,39}} + 2,147 Fr^{0,51} \right)^{3}$$

$$\rho_{L}gd_{0}^{2}/\sigma \qquad \rho_{L}^{2}gd_{0}^{3}/\mu_{L}^{2} \qquad V_{g}^{2}/gd_{0}$$

$$= f(1, 1) = \text{choice of model}$$

$$d_f = 1,23 d_e$$

Snabre, P. & Magnifotcham, F. Recirculation flow induced by a bubble stream rising in a viscous liquid The European Physical Journal B, 1998, 4, 379-38

 $H_z \approx H_{cuve} - h_{ini}$ $V_B^2 = \frac{4}{3} \frac{d_e g \left(1 + \varepsilon\right)}{C}$ $D_z \approx d_f$ $f_z \approx \rho g \varepsilon \left[N m^{-3} \right]$

1

Correlation for bubbles diameter

Jamialahmadi, M. et al, Study of Bubble Formation Under Constant Flow Conditions, *Chemical Engineering Research and Design*, **2001**, 79, 523 - 532

PIV measurement vs numerical simulation

Effect of external flow induced by the mechanical stirring

Experimental set-up

PIV measurement

Deviation of the bubble train trajectory

No influence of the rotating speed on the size of bubbles

2-b Interaction with mechanical stirring

Trajectory of bubble train

Lagrangian equation for the trajectory :

$$\frac{du_p}{dt} = F_D \left(\begin{matrix} \mathbf{r} & \mathbf{r} \\ u & -u_p \end{matrix} \right) + \frac{g \left(\rho_p - \rho \right)}{\rho_p} + F_{sup}$$

Drag force
$$F_D = \frac{18\mu}{\rho_p d_p^2} \frac{C_D \operatorname{Re}}{24}$$

$$\mathbf{\dot{F}}_{sup} = \frac{1}{2} \frac{\rho}{\rho_p} \frac{d}{dt} \left(\mathbf{\ddot{r}} - \mathbf{\ddot{r}}_p \right) + \frac{\rho}{\rho_p} \mathbf{\ddot{u}}_p \frac{\partial u}{dx_i}$$

Added mass

Specific drag coefficient :

$$Cd = 1 + \frac{16}{\text{Re}}$$

with Re = $\frac{\rho d_p |u_p - u|}{\mu}$

2-b Interaction with mechanical stirring

With one Air Bubler

0/

2-b Interaction with mechanical stirring

Results

- A Semi empirical model, simple, validated in a specific range of bubbling, easy to set up in global calculation of the process.
- The interaction of mechanical stirrer is taken into account
 Drawback : not predictive outside the range of validation.
- This model is used in our project of optimisation or conception of new vitrification furnace
- But some specifics cases can't be simulated with this model

2.c Taking coalescence into account in the semi-empirical method

Calculation steps with coalescence

D. Gautheron (SymHydro conference 2012)

Workshop on gases and bubbles in molten glasses $|\,{\rm CEA}\,|\,13\,{\rm MAY}\,2016\,|\,|\,{\rm PAGE}\,16$

Modeling the gas-liquid interface

Volume Of Fluid (VOF) model equations - Volume fraction of one phase

$$\frac{1}{\rho_L} \left[\frac{\partial}{\partial t} (\varepsilon_L \rho_L) + \nabla (\varepsilon_L \rho_L \vec{v}_L) = 0 \right] \qquad \qquad \varepsilon_L + \varepsilon_G = 1$$

- Momentum equation

$$\frac{\partial}{\partial t}(\rho \vec{v}) + \nabla .(\rho \vec{v} \vec{v}) = -\nabla p + \nabla .[\mu (\nabla \vec{v} + \nabla \vec{v}^T)] + \rho \vec{g}$$

$$\rho = \varepsilon_L \rho_L + \varepsilon_G \rho_G \qquad \mu = \varepsilon_L \mu_L + \varepsilon_G \mu_G$$

DE LA RECHERCHE À L'INDUSTRI

3 - Multiphase model

3- VOF Simulation

Complex diphasics flows have been successfully simulated.

Slow motion (real time / 10)

VOF model, very accurate and allowing to simulate complex configuration. Tool extremely useful to understand phenomena

Openfoam software ~2 millions mesh elements

Good qualitative agreement – No more experimental-based correlations Drawback : Highly time consuming (1 week of calculation for 1 second simulated)

Conclusion and prospects

Numerical Simulation of mixing molten glass with air bubbling is well advanced :

1 - A Semi empirical model, simple, validated in a specific range of bubbling, easy to set up in global calculation of the process.

• The interaction of mechanical stirrer is taken into account

• Drawback : not predictive outside the range of validation.

This model is used in our project of optimisation or conception of new vitrification furnace

2 – A multiphase flow direct simulation (with VOF model) is used for specifics studies involving very complex interface interaction

Prospects :

Include redox aspect

Thank you for your attention

Any questions ?

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Marcoule | 30207 Bagnols-sur-Cèz e cedex T. +33 (0)4 66 79 XX XX | F. +33 (0)4 66 79 XX XX

Direction de l'Energie Nucléaire DTCD SCDV

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019