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Numerical simulations	and	Rigidity of	glasses	– I

Matthieu	Micoulaut (UPMC)

- What can we obtain from MD	trajectories ?
Structure	
Dynamics

Bertrand	has	generated sets	of	(x,y,z)	positions	for	various times	at various given
thermodynamic conditions	(N,V,T,P).		Matthieu	attempts now to	use	the	trajectories !



xi(t),	yi(t),	zi(t)

Structure
Thermodynamique
Dynamique
Vibration



Historically…
Compution of	the	radial	distribution	function of	vitreous SiO2 from
a	ball and	stick	model

Bell	and	Dean,	1972



A)	PAIR	CORRELATIONS	

q Radial	distribution	function :	

q Pair	correlation function:

Alternative	definitions :

q Total	distribution	function:

q Differential distribution	function
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Pair	distribution	function :	examples

Visual	inspection	allows to	distinguish between a	crystalline and	an	
amorphous structure	

BCC	Ni	lattice with EAM	potential



Effect of	thermodynamic variables	:	temperature

Amorphous Se
The	integral of	g(r)	allows to	
determine the	number of	neighbors
around a	central	atom.
Remember

The	integral to	the	first	minimum	
gives the	coordination	number.

rm
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Running	coordination	number N(r)
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Effect of	thermodynamic variables	:	pressure	

q Direct	comparison with experiments
possible	but	can sometimes fail

q Simple	force	fields can not	account for	
pressure-induced changes	(metallization)

q Additional structural	insight	is provided by	
partial	correlation functions :	Ge-Ge,	Ge-O,	
O-O

Expt.	(neutron)	Salmon,	JPCM	2011
MD:	256	GeO2 using Oeffner-Elliot	FF

d-GeO2

Micoulaut,	JPCM	2004
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D.	Marrocchelli et	al.,	2010

Effect of	composition:	extending to	multicomponent systems
This	is case	for	most glasses	and	materials
SiO2,	GeSe2,	SiO2-Na2O,…

GeO2



GeSe2

•Need to	use	First Principles Molecular
Dynamics

- Classical force	field fail to	describe
the	structure	
- Charge	transfer (covalent	bonding)
- Homopolar defects

Vashishta potential – MD
Experiment (Salmon,	1991)

Pair	distribution	function in	multicomponent systems…failures



First	Principles Molecular Dynamics	simulations	of	chalcogenides

Classical MD Ab	initio MD	

Solve the	Schroedinger equation for	a	system	of	N	atoms
Simplified with the	DFT	scheme (one	electron density)

q No	force	field necessary.		Heavy computational cost
q Small	systems (100s	of	atoms,	106 in	Classical MD)
q Small	simulation	time	(100ps,	100	ns	for	classical MD)
qMost	approximation	encoded in	the	exchange-correlation functional



As2Se3

Bauchy et	al.	JNCS	2013

Classical MD

Presence of	homopolar defects !!	



Also,	g(r,r’)	depends only on	|r-r’|,	i.e.:

Or	(isotropic fluid,	everything depends only on	k=|k|):

An	alternative	calculation of	the	structure	factor	S(k)	is achieved via	a	Fourier	
transform of	the	pair	distribution	function g(r).

B)	STATIC	STRUCTURE	FACTOR

For	a	simple	liquid,	the	static structure	factor	is given by	:

where rk is the	Fourier	transform of	the	microscopic density r(r).	
In	molecular simulations,	a	convenient way of	calculating is:



liquid

Lamelar phase

cristal

In	a	cubic	box	of	finite	size	L	with	PBC
with	periodic	boundary	conditions	(PBCs)

q wavevector increment	is	dk =	2p/L

q PBCs impose	a	constraint	L	on	the	
maximum	possible	period.

q Any	period	larger	than	L	(any	
wavevector smaller	than	k)	is	
unphysical.	

q For	glasses,	uniformity	hypothesis

q Both	methods	agree	for	liquids	and	
glasses

q FT	breaks	down	for	the	low	k	limit	
(long	wavenumber	lamellar	phase)

q For	crystals,	the	FT	of	g(r)	only	capture	
some	peak	locations	of	S(k).	

q Peak	locations	that	correspond	only	
partially	to	those	determined	from	
crystallography	(blue	vertical	lines)

Zhang,	arXiv:1606.03610v2	(2016)

Lennardjonesium



Direct	comparison with experiments :	neutron	or	X-ray	diffraction

Intensity scattered in	the	direction	kf

Equal to	the	computed structur efactor.
Kob	et	al.	1999



Calculating a	structure	factor	S(k)	from a	MD	simulation	:	2	options

1. Calculate the	pair	correlation function g(r)	from the	MD	trajectory,	then use	:

2. Calculate directly S(k)	from the	trajectory using:

Differences between both methods can arise,	
and	one	is limited to	r<L/2,	i.e.	k<p/L

Effects of	the	components	of	the	wavevector

As2Se3



Structure	factor	in	multicomponent systems
SiO2,	GeSe2,	SiO2-Na2O,…

Consider a	system	with n	components	having N1,	N2,	…Nn particles.
We can write Faber-Ziman partial	structure	factors:

out	of	which can be computed a	total	structure	factor:

q Neutron	weighted:

with bi the	neutron	scattering cross	section	,	ci the	concentration	of	the	species
bi=	(tabulated,	depends on	the	isotope)

q X-ray	weighted:

With fi(k) the	X-ray	form factor	(elastic or	inelastic XRD)
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v-SiO2
l-GeSe2

Micoulaut et	al.,	PRB	2009



Detailed structural	analysis fromMD

q Neighbor distribution

Remember

First	minimum	of	g(r)	can be used to	define the	
coordination	number.
But	this is an	average.	

• Details are	provided from the	statistical analysis
of	each atom.	

• Allows to	characterize the	nature	of	the	
neighborhood

• Can	be extended to	partial	CN
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Amorphous Ge1Sb2Te4

Raty et	al.	Solid	State	Sciences	2010



Voleska et	al.,	PRB	2013

Ga11Ge11Te78

Examples-2:	Statistics of	neighbors with homopolar bonds



Detailed structural	analysis fromMD

q Bond	angle	distributions q Depending on	the	system,	provides
information	about	the	local	geometry
(tetrahedral,	octahedral,…).

q Directional bonding vs	non-directionalSnSe2
1173	K

300	K

Micoulaut et	al.	PRB	2008
Cormack	and	Du,	JNCS	2001

SiO2-Na2O



Detailed structural	analysis fromMD

q Ring	statistics:		serve	to	characterize the	intermediate range	order
• Simulated	positions	can	serve	to	define	nodes	and	links.

When		connected	sequentially	without	overlap,	one	has	a	path.	
A	ring	is	therefore	simply	a	closed	path.
Each	of	these	rings	is	characterized	by	its	size	and	can	be	classified.

S.	Le	Roux,	P.	Jund,	Comp.	Mater.	Sci.	2010
http://rings-code.sourceforge.net/



C)	MEAN	SQUARE	DISPLACEMENT	AND	DIFFUSION

The	mean square	displacement is defined as	

- performed in	NVE	or	NVT.

- do	not	use	periodic boundary conditions

Gives a	direct	description	of	the	dynamics.

As2Se3

Bauchy et	al.,	PRL	2013 Kob	PRE	2000

A-B	Lennard-Jones	liquid



More	insight	into the	msd…

GeO2

Caging régime	(LT)Ballistic régime
msd~t2
Short	time

Diffusive	régime
Long	times



Behavior with temperature

Usually,	a	gentle Arrhenius	behavior :	
D=exp[-EA/kBT]

SiO2-2Na2O

Bauchy et	al.	Chem Geol.	2013

• Species dependent.	Na	diffuses	faster than
Si	or	O	in	silicates

Kob,	2008

Curvature linked with EOS

Agreement	on	structure	does not	reflect the	
quality of	the	potential.	Dynamics	!

SiO2



Calculating	viscosity	using	Stokes-Einstein :

Direct	comparison	for	
Ge20Se80	 and	Ge33Se66		

Tentative	connection with viscosity

Yildirim,	Nature	Comm.	2016

Clear decoupling between MD	and	experimental ranges



Behavior of	the	diffusion	constant	with other thermodynamic variables

• Dependence on	V	or	P.

• Usually at fixed V	(e.g.	Vg)	and	P	non-zero

Bauchy et	al.,	PRB	2011

Errington et	al.	Nature	2001

H2O



D)	VAN	HOVE	CORRELATION	FUNCTION
We first	introduce a	density correlation function G(r,r’,t)	defined from the	local	atomic
densities for	a	homogeneous system	:

The	Van	Hove	function is the	probability density of	finding a	particle i	in	the	vicinity of	r	
at time	t,	knowing that a	particle j	is in	the	vicinity of	the	origin at time	t=0.

We can split	the	function into two parts,	self	and	distinct:	

i

Dirac	at t=0

g(r)	at t=0



Physical interpretation:	

q The	self	part	Gs(r,t)	is the	probability density of	finding a	particle i	at time	t	
knowing that this particle was at the	origin at time	0.	Probability	that	a	particle	
has	moved	a	distance	r	in	time	t	(dynamics).

q The	distinct	part	Gd(r,t)	is	the	probability	density	of	finding	a	particle	j	different	
from	i at	time	t	knowing	that	the	particle	I	was	at	the	origin	at	time	t=0.	
Probability	to	find	at	time	t	a	different	particle	at	a	distance	r	from	a	place	at	
which	at	time	t=0	there	was	a	particle.	And	Gd(r,0)=g(r).

i



Examples:	Self	part	in	Na	silicates

q Small	times:	rattling	and	hopping	motion	on	the	length	scale	of	nearest	neighbors.
q Spatial	extent	of	the	motion	is	determined	by	thermodynamic	conditions:	T	

(viscous	slowing	down)	or	P	(motion	blocked	by	the	high	density).

Kob,	PRB	2000

Bauchy,	PRB	2011



E)	INTERMEDIATE	SCATTERING	FUNCTION

Instead of	considering correlations in	space,	one	can perform a	study in	reciprocal
space,	i.e.	in	Fourier	components.	

q The	intermediate scattering function is defined as	the	Fourier	transform of	the	Van	
Hove	function:

out	of	which,	can be defined a	self	and	a	distinct	part:	

Instead of	Fourier	transform,	these functions can be also directly computed from the	
atomic trajectories.
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1.	Self	part	(incoherent intermediate scattering function):

q Fs(k,t)	can be directly compared to	experiments from inelastic neutron	or	X-
ray	scattering.

q Fs(k,t)	characterizes the	mean relaxation	time	of	the	system	(area	under
Fs(k,t)	 can be used to	define a	relaxation	time).	Spatial	fluctuations	of	Fs(k,t)	
provides information	on	dynamic heterogeneities.

q Short	times	:	balistic régime

q Intermediate times:	cage	motion	
(b relaxation)

q Long	times:	Particles leaving cages.	
Kohlrausch	(stretched exponential)										

behavior.	



Examples :	 CaAl2SiO8

Morgan	and	Spera,	GCA	2001

Cage	motion	(b régime)	extends to	long	times	at low T Horbach,	Kob	PRB	1999

GeSe4

Yildirim et	al.	JCP	2016



Examples (chalcogenides,	Ge-Se)	:	

q Glassy relaxation	at low k	extends to	
longer	times	

q Kohlrausch	fit	at long	times.	Access	to	
the	relaxation	time	ta,	b.	



Slowing down	of	the	dynamics:	a	more	universal behavior…

Chaudhuri et	al.	AIP	Conf.	2009

MD	simulation	of	hard	spheres
Effet	of	density

Experiments on	bidimensional
granular packing

Dauchot et	al.	PRL	2006



F)	LINEAR	RESPONSE	THEORY

q Goal:	Having MD	generated trajectories at our disposal,	we want to	compute
- viscosity,	electrical or	thermal	conductivity,	mechanical properties,	etc.
Use	of	linear response theory

q General	idea (Onsager):	Disturbance in	a	system	created by	a	weak external
perturbation	decays in	the	same way as	a	spontaneous fluctuation	in	equilibrium.

q Linear response theory :	link between time	correlation functions and	response to	
weak perturbations	(Green-Kubo’s fluctuation-dissipation	relations)

SiO2-2Na2O
2000K



Example-1:	Viscosity of	a	silicate	liquid (NS2)	and	MORB	under pressure

Bauchy et	al.	Chem.	Geol.	2013

NPT	(P=0),	then NVE
NVE	alone

Horbach and	Kob,	PRB	1999



Example-1:	Viscosity of	a	silicate	liquid (NS2)	and	MORB	under pressure

q Detecting anomalies	(minima	in	viscosity)

q Checking	for	empirical relationships

Eyring (1948):	𝜼 = 𝒌𝑩𝑻/𝝀𝑫

With l a	jump	distance	(dO-O~	a	few	A)

• Compute (MD)	D	and	h
• Valid only at high	viscosity



Beyond linear response theory - usefulness of	MD

q Channel	conduction	in	silicates

q Energy landscapes
Sciortino et	al.	PRL	2002

q Isoconfigurational Ensemble

Meyer	et	al.	PRL	2004

q Non-Gaussian parameter

q Dynamic heterogeneities

Matharoo et	al.	PRE	2006 Berthier	et	al.	(Book	2017)

Kob	et	al.	PRL	1997



Conclusion:	

q Dynamics	of	glass-forming	systems	can	be	followed	with	numerous	tools	
using	computer	simulations.

q Insight	into	structure	and	link	between	structure	and	dynamics.

q Functions	quantify	the	slowing	down	of	the	dynamics.



Final	recommendation regarding structural	properties

1. Do	the	best	you can.	
2. Don’t fool the	reader.	
3. Be	honest with the	data	
4. Do	not	attempt to	dissimulate
5. Unique	S(k)	?

Uncarefully simulated liquid GeTe4


