Observation par RMN des hétérogénéités structurales dans les verres bioactifs CaO-SiO₂-P₂O₅

Franck Fayon, Cédric Duée, Ophélie Vernay, Thomas Poumeyrol, Mathieu Allix, Dominique Massiot

CEMHTI – CNRS

Conditions Extrêmes et Matériaux : Haute Température et Irradiation Extreme Conditions and Materials : High Temperature and Irradiation

ORLEANS, France

Verres bioactifs

- Calcium silicate-based glasses doped with phosphorus oxide
- Bioactive : Strong bonding interface connecting the glass to the living tissues (Enable stable integration of implants)

Powder (100-800 μm)

Small pieces

M. Neo et al., J. Biomed. Mat. Res. 26, 1419 (1992).

- Dental bone grafting material (Perioglass[®], Biogran[®])
- Orthopedic and cranofacial reconstruction (Novabone[®], Bonalive[®])
- Reconstruction of tiny bones of the middle ear

Bioactivity depends on glass composition and structure !

Structure locale des verres bioactifs CaO-SiO₂-P₂O₅

Repolymerization of the disordered silicate network with P addition

Liaisons P-O-Si ??

Débattue dans la littérature

J. Phys. Chem. C 2008, 112, 5522-5562

Multinuclear Solid-State NMR Studies of Ordered Mesoporous Bioactive Glasses

E. Leonova,..., M. Vallet-Regi, M. Eden

"Although the signal at ca. -7 ppm may safely be assigned to ³¹P in Q¹ units, it is less clear if those derive from P-O-P or P-O-Si bonding scenarios..... **Our NMR results suggest** that the ³¹P resonance at ca. -7 ppm derives from **P-O-Si moieties.**"

Chem. Mater. 2007, 19, 5644-5652

The Structure of Bioactive Silicate Glasses: New Insight from Molecular Dynamics Simulations

A. Tilocca, A. N. Cormack, et al.

".....characterized by a marked increase in the connectivity of the silicate network and by an increasing fraction of phosphate groups involved in P-O-Si." Chem. Mater. 2010, 22, 5644-5652

New Insights into the Atomic Structure of 45S5 Bioglass by Means of Solid-State NMR spectroscopy and Accurate First-Principles Simulations

A. Pedone, T. Charpentier et al.

"No Si-O-P bridges have been detected by both ³¹P NMR and ¹⁷O MQMAS experiments, and therefore isolated orthophosphate units are able to form nanodomains that subtract sodium and calcium cations from their network modifying role into the silicate network."

Liaisons P-O-Si !!

- Reintroduction of the heteronuclear P-Si dipolar couplings
- Dephasing of the ³¹P echo signal
- ²⁹Si-enriched samples

 PO_4^{3-} (95-90% of the P atoms) $M_2 = 44 \text{ to } 50 . 10^4 \text{ rad.s}^{-2}$

M₂ = 96 .10⁴ rad.s⁻² d(P-Si) ≈ 3.0 Å → P-O-Si bond (5-10 % of the P atoms)

Distribution des monomères PO₄³⁻ dans le réseau Silicate

- Amorphous material
- Very weak Z-contrast between Si and P

No information with conventional techniques (SAXS, TEM, XRD)

³¹P solid-state spin-counting multiple-quantum NMR ?

TEM (5.0 mol.% P₂O₅)

Principe de la spectroscopie RMN multi-quantum

Spectroscopie multiple-quantum ³¹P dans un phosphate cristallin

Reference compound: Structure made of PO₄ monomers Weak homonuclear P-P dipolar couplings (D< 270 Hz) But the excitation of Multiple Quantum Coherence is possible !!!

Spectroscopie multiple-quantum ³¹P dans les bioverres

Highest coherence order value (p_{max}) increases with the phosphorus content

Taille des domaines phosphates dans les bioverres

Polymerization of the Si network

F. Fayon, C. Duée, T. Poumeyrol, M. Allix, D. Massiot, J. Phys. Chem. C 117, 2283-2288 (2013)

Simulations numériques / Expériences

Numerical simulations: SIMPSON Bak, Rasmussen and Nielsen, JMR 2000. 6 P cluster 8 P cluster Vosegaard et al., Mon. Chem 2002. 2.6 mol.% 3.7 mol.% P₂O₅ glass P₂O₅ glass 1.0 1.0 0Q • **0Q** • Exp. ·2Q 20 Exp. 0.8 +40 40 0.8 -60 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 . 10 12 0 8 2 Δ 6 0 2 6 8 10 12 T_{exc.} (ms) T_{exc.} (ms) Size of the clusters Ø≈1 nm

Conclusion

Structure of bioactive glass shows a non uniform (homogeneous)
 distribution of phosphate groups and contains chemical heterogeneities

Low P₂O₅ content (≈ < 3.7 mol.%) : Forte Bioactivité</p>

Small phosphate clusters, average size of 1 nm

Higher P₂O₅ content : Faible Bioactivité

Significant repolymerization of the silicate network Clusters close together forming **larger aggregate**

Bioactivité des verres

Bioglass[®] 45S5

46,1mol% SiO₂ – 26,9 mol% CaO – 24,4mol% Na₂O – 2,6mol% P₂O₅

Interface : Liaison forte et stable avec l'os

Caractérisation de la phase formée en surface du verre

Hench *et al.*, Journal of the American Ceramic Society, 1991, 74 (7), p.1487 Neo *et al.*, Journal of Biomedical Materials Research, 1992, 26 (11), p.1419

Mécanismes proposés

Hydrolyse surface verre \rightarrow Si-OH (silanols) Condensation des Si-OH \rightarrow **Gel de silice**

Migration Ca²⁺, PO₄³⁻ vers surface du Gel de silice
 → Formation phase CaP amorphe

-Migration HO⁻, CO₃²⁻ vers CaP amorphe

-Cristallisation progressive

➔ HydroxyApatite Carbonatée HAC

HAC → liaison avec l'os naturel

Interface : Liaison forte et stable avec l'os

BIOACTIVITÉ

Caractérisation des phases formées in-vitro

Préparation SBF (Simulated Body Fluid)

Concentration (mMol/L)	Plasma Humain	SBF
Na⁺	142,0	142,0
K+	5,0	5,0
Mg ²⁺	1,5	1,5
Ca ²⁺	2,5	2,5
Cl⁻	103,0	147,8
HCO ³⁻	4,2*	27,0
HPO ₄ ²⁻	1,0	1,0
SO4 ²⁻	0,5	0,5
рН	7,24-7,40	7,25-7,42

Verre 45S5

Granulométrie 40-75µm Atmosphère contrôlée Ratio Solide / Liquide = 1

Formation d'une couche de gel de silice ?

 250nm

 Altération de surface

 Mag = 5.00 K X
 1 µm

 MEB-FEG
 EHT = 3.00 kV

 WD = 2.8 mm
 Signal A = InLens

 Aperture Size = 30.00 µm

Mise en évidence difficile pour des temps de réaction courts

Formation d'une couche de gel de silice

CPMAS = Cross-Polarisation MAS

Observation sélective des espèces hydratées (gel de silice)

Formation d'une couche de gel de silice

Gel de silice \rightarrow majoritairement unités Q^{4Si}

Formation d'une phase CaP amorphe

20minutes

2 heures

Amas de particules sphériques

Phosphate de calcium amorphe

Cristallisation de la phase CaP amorphe

Nouvelle morphologie nanocristalline

Hydroxyapatite nanocristalline

Nanocristaux = batonnets

Cristallisation de la phase CaP amorphe

Structures des phases phosphocalciques

Corrélation hétéronucléaire RMN ³¹P / ¹H

Structures des phases phosphocalciques

distinction des bandes des CO₃²⁻ et des HPO₄²⁻

852cm⁻¹ → CO₃²⁻ type A 846cm⁻¹ → CO₃²⁻ type B >870cm⁻¹ → HPO₄²⁻ en phase désordonnée

Conclusion

Remerciements

Cédric Duée, Ophélie Vernay, Tomas Poumeyrol, Mathieu Allix, Emmanuel Véron, Domingos De Sousa Meneses, Dominique Massiot

TGIR RMN

http://www.tgir-rmn.org/

³¹P multiple-quantum experiments in bioglasses

Statistical model :

Number of correlated spins is time dependent $N(\tau)$

with a binomial distribution of MQC intensities (Pines et al.) Baum, Munovitz, Garoway and Pines, J Chem Phys 1985. $\frac{(2N)!}{(N-p)!(N+p)!} \approx \exp\left(\frac{-p^2}{N}\right)$ Munovitz, Pines and Mehring, J Chem Phys 1987. 3.7 mol.% P₂O₅ 5.0 mol.% P₂O₅ 2.6 mol.% P₂O₅ 0.6 0.4 0.4 0.4 Intensity Intensity Intensity T_{exc.}=4ms T_{exc.}=4ms $T_{exc} = 4ms$ N = 6N = 4N = 5 0.2 0.2 0 0 0 +2 +4 +6 +8 +10 +12 0 +2 +4 +6 +8 +10 +12 +2 +4 +6 +8 +10 +12 0 Coherence order (p) Coherence order (p) Coherence order (p) 0.4 Intensity 0.3 Intensity 0.4 Intensity $T_{exc} = 12ms$ $T_{exc} = 12ms$ $T_{exc} = 12ms$ 0.2 N ≈ 8 N = 6 0.2 0.1 +2 +4 +6 +8 +10 +12 +2 +6 +8 +10 +12 0 +4 0 0 +2 +4 +10 +12 +6 +8 Coherence order (p) Coherence order (p) Coherence order (p)

Local structure of bioactive Glasses

