

03/27/2017 to 03/31/2017

Organic Glasses

C. Alba-Simionesco,

Laboratoire Léon Brillouin, UMR12, CEA-CNRS, France

C. Crauste, D. Morineau, S. Eibl, M. Gonzalez, B.Beuneu, F. Porcher, J.Darpentigny

Glassforming molecular liquids and polymers

I- phenomenology of the glass formation key features of interest

II- Notion of "Fragility" role of control parameter temperature and density effect of intermolecular interactions

III- local order and mesoscopic order ; underlying length scales high T activation energy ultra stable glasses

IV- molecular networks ? **Reflexion over Broad Composition Range** solutions and mixtures

Molecules and polymers

AFM 2009 IBM

Alkyl chain CH_3 CH_3 $CH - CH - CH_2 - CH_2 - CH_3$ | CH_2 CH_2 CH_2 CH_3 | CH_3 CH_2 CH_3 Chaîne carbonée principale

H H H **Macromolecules**

Macromolecules Repetition of N Monomers

A minimal complexity is required :

Argon does not form a glass , neither binary Lennard-Jones systems

avoiding the crystallisation with locally preferred structures

Glass formation = solidification without crystallization Quench easy, sometimes in liq N2

Intramolecular Covalent bonds 200-600 kJ/mole

Intermolecular interactions : Hydrogen bond 1-40kJ/mole L-J ~10 kJ/mole coulombic

No network

Molecules Low Tg = 56K- 350K

Polymers Tg = 150K 470K

Empirical rules : Tb /Tg >2 Tg/Tm ~2/3

at atmospheric pressure Looking for an universal relationship between thermodynamics, structure and dynamics

Dramatic viscous slowing down

Dramatic viscous slowing down approaching the glass transition How sensititive to external parameters?

Polymers : Molecular Weight effect on Tg

Flexible Polymer PDMS vs rigid polymer PS

Rg versusMw

Tg changes with pressure P and chain length N

Data from Naoki et al.,1987

Data from Hintermeyer et al.,2008

Polymeric system

Additional force appears in a polymer due to chain connectivity.

Rouse model assumes Gaussian statistics of the chain and:

It predicts: $\langle x^2 \rangle^{-10.5}$ and G``(ω) $\sim \omega^{0.5}$

$$\xi \frac{dx(t,n)}{dt} = \frac{3T}{a^2} \frac{\partial^2 x(t,n)}{\partial^2 n} + f(t)$$

Central question :

Is the sharp increase of the viscosity related to the growth of a 'cooperative' length scale ?

Glass Science : a jungle of phenomenology

Summarized by a quest for characteristic lengthscale(s) provided by dynamical properties

Space-time 4-point correlation function

Cooperativity and correlation length

$$\tau(T) = \tau_0 \exp\left[N_{\rm coop}(T)\frac{\Delta\mu}{k_B T}\right]$$

 $N_{\rm coop} \nearrow$ as T \searrow

Adam and Gibbs, 1965

Correlation length Dynicamical

E. Weeks *et al.*, Science 287, 627 (2000) www.physics.emory.edu/~weeks/lab/glass

 Φ = 56% supercooled fluid 5% fastest of the particles in red

Large clusters of cooperative fast particles : spatially heterogeneous dynamics

Relevant length : dynamic or static ?

Toluene

ÇH₃

"Dynamic heterogeneities": at low T, liquid made of regions with widely different mobilities

Spatial correlations in the dynamics

From Standard 2-time correlation function to Space-time 4-point correlation function

MD simulations V Teboul

Viscous slowing down and glass transition 1- Notion of fragility

aboratoire Léon Brillouin

$$m_P = \left. \frac{\partial \log_{10}(\tau)}{\partial T_g/T} \right|_P$$

Fragility = the fact that the dynamical slowdown has stronger than Arrhenius temperature dependence

Correlations of m with various properties in the corresponding glass or liquid

Thermal expansivity 6-10 *10⁻⁴ K⁻¹

comparing systems different T-dependence of τ_{α} or η

How to scale out the density at atmospheric pressure ?

m-toluidine

Suggesting high Pressure (or ρ) experiments

$$\left(\frac{\partial \ln \tau}{\partial T}\right)_{P} = \left(\frac{\partial \ln \tau}{\partial T}\right)_{\rho} + \left(\frac{\partial \ln \tau}{\partial \rho}\right)_{T} \left(\frac{\partial \rho}{\partial T}\right)_{P}$$

$$\left(\frac{\partial \ln \tau}{\partial T}\right)_{P} = \left(\frac{\partial \ln \tau}{\partial \rho}\right)_{T} \left(-\alpha \tau + \alpha P\right)$$

isobaric thermal expansivity coefficient $\alpha P = -\rho - \frac{1}{(\partial \rho / \partial T)_P}$ isochronic expansivity coefficient (at η or τ constant) $\alpha \tau = -\rho - \frac{1}{(\partial \rho / \partial T)_T}$

ratio $|\alpha_{\tau}|/\alpha_{P}| =$ quantitative estimation of the relative contributions of the temperature and the density to the change of the relaxation time along a given isobar

	isochrone	$lpha_{P \ 10^4 \mathrm{K}^{-1}}$	$-lpha_{ au \ 10^4 { m K}^{-1}}$	$ lpha_{ au} /lpha_{P}$
polybutadiene	τ=10 ⁻⁹ sec	6.5	10.6	1.6
glycerol	τ=10 ⁻⁹ sec	4.2	25	6.2
m- toluidine	τ=10 ⁻⁹ sec	7.3	11.5	1.6

$$|\alpha_{\tau}|/\alpha_{P} > 1$$

Test correlation to fragility by changing

a) -the thermodynamic state or pathb) -the relaxation time

A property is then considered as "intrinsic" when it does not depend on a) and b)

model-free assessment of the respective contributions of ρ and T in the viscous slowing down at P cst

 $\tau_{\alpha}(\mathbf{T}, \boldsymbol{\rho}) = \tau_{\infty} \exp \left[E_{a}(\mathbf{T}, \boldsymbol{\rho}) / k_{B}T \right]$

two extremes physical pictures

dynamic congestion due increase of density and drainage of free volume

activated dynamics (Ea > kT) thermally activated processes in cst density energy landscape

$$\log(\tau_{\alpha}(\rho,T)) = F\left[\frac{E_{\infty}(\rho)}{T}\right]$$

 ρ and T dependences of the α -relaxation time described by a single scaling variable X=E_{∞}(ρ) /T $E_{\infty}(\rho)$ = effective activation energy characteristic of high-T Arrhenius regime One single energy scale !

How does the scaling work ? How well established ? on the E(ρ ,T) or on log(τ)

A crossover temperature $T^*(\rho) \propto E_{\infty}(\rho)$

20 JCP 2004

How well established ?

When no high-T data are available ,

extension to polymers with $e(\rho) \propto E\infty(\rho)$

$$\log(\tau_{\alpha}(\rho,T)) = F\left(\frac{e(\rho)}{T}\right) \text{ where } e(\rho) = \rho^{x} \text{ or } e(\rho) = \rho - \rho^{*}$$

How usefull?

SCALING plot at the G.T. temperature (100sec),

III - local order and mesoscopic order underlying length scales high T activation energy ultra stable glasses

Looking for a simple* molecular system :

- Iarge number of partial contributions to S(Q) simplifying the shape?
- still able to form a (laboratory) glass and keep some disorder. (resisting to the crystallization).
- Iow high Temperature activation energy and high fragility?

C10H18 Decalin

* Simple = pseudo atomic ?

Structure of simple atomic liquids

(here assimilated to a sphere, no additional degrees of freedom) neutron measurement in the Q space (F.T.)⇒the radial pair correlation function in real space g(r)

Decomposition fo the structure factor (case of toluene C7D8)

$$S(Q) = Dm(Q) + f1(Q)$$

$$S_M(Q) = f_1(Q) + \frac{4\pi}{Q} \rho_M \int (g_L(r) - 1) r \sin(Qr) dr$$

$$S(q) = \frac{1}{\overline{b}^2} \left[\frac{1}{N} \left\langle \left| \sum_i b_i e^{i\mathbf{q}\cdot\mathbf{r_i}} \right|^2 \right\rangle_t - \left(\overline{b^2} - \overline{b}^2 \right) \right]$$

 $ar{b}^2 = \left|\sum_{lpha} c_{lpha} b_{lpha}
ight|^2 \ ar{b}^2 = \sum_{lpha} c_{lpha} b_{lpha}^2$

N =number of atoms in a molecule bi: scattering length of atom I, ri position vector, α , c_{α} atom type and its concentration

Schematic of a diffraction experiment

Aromatic systems : same intermolecular interaction

Importance of the High Temperature Activation Energy

aboratoire Léon Brillouin

 E_{∞} changes from one molecule to another : combined effect of the strength of the intermolecular interactions, the shape of the molecule, and the short range correlations.

Molecular shape matters, not just size

Consequence of the molecular shape, ability to form a glass **Introducing the comparison to metallic glasses**

Atomic or spherical molecular liquids do not experience glass formation

Molecular Fragile Glassformers Liquid, glass

Ar : Yarnell 1973 Ni Holland-Moritz 2008 CCL₄ Pusztai 2009

boratoire Léon Brillouin

Very Simple Liquids (spherical shape) Only Crystal formation + water, benzene Analysis of the non-trivial behavior of the structure decrease in intensity is related to the compaction of the system, or better than simple spheres; whereas the S center-of-mass slightly increases as expected.

Changes at ~2.4-2.5 Å⁻¹ and decrease in intensity of main peak are due to strong changes observed in S(Q) C-H partial, while growing of peak at ~3.2 Å⁻¹ is mainly due to the H-H partial. C-C partial does not seem to change much as the center of mass.

Comparison with Hard spheres and a good molecular glassformer.

The size and the shape of the local arrangement is different

aboratoire Léon Brillouin

Neighbour geometry:

The neighbour geometry for Decalin is relatively close to the geometry of the model of randomly close packed hard spheres.

Cumene

The ability to form a glass comes from the strong correlations between first neighbors and Interpenetrating aggregates in the high viscous regime (T<T*).

Formation d'un verre stable

T du substrat = proche de 0.85 Tg avec une vitesse de dépot de 0.2 nm/s jusqu'à une épaisseur de 10-15nm jqà 600nm

Enceinte à 10-8 torr

Empilement très efficace Haute densité

Très différent des techniques de trempe par déposition de vapeur avec un substrat à T<<Tg

indomethacin (IMC, Tg~315 K) trisnaphthylbenzene (TNB, Tg~348 K)

Schematic representation Potential energy landscape

coordonnées

oratoire Léon Brillouin

Offre la possibilité de découvrir les parties les plus basses de ce paysage et approcher un possible verre idéal

Sans compter les applications technologiques

Signature calorimétrique Cp par DSC TNB

363K est la T nécessaire pour activer la mobilité des molécules , indiquant que le verre PVD est beaucoup plus stable cinétiquement

1000 K/T

Avec une densification de l'ordre de 1.3% est mesurée par ellipsométrie

High-Modulus Organic Glasses Prepared by Physical Vapor Deposition

Kenneth L. Kearns, et al Adv. Mater. 2009, 21, 1

Fréquence de Debye des différents états

À partir des modes vibrationnelles dans le verre

description de la reponse du verre à de petites pertubations

Pour les systèmes désordonnés, ces modes établissent une relation entre le désordre structural et la dynamique collective

Des différences moins marquées à basses fréquences, mais bien présentes

Systèmes moléculaires complexes avec des modes intramoléculaires à basse freq.

Analyse de la VDOS

 w^2

à partir des déplacements des particulesd'un systeme soumis à une contrainte
 → Informations sur les ihomogénéités de l'amorphe,
 Toute deviation à une dcontrainte uniforme définit des déformations non affines

cross over entre un **comportement élastique continu (Debye)** et un **régime de déplacement non affine**

'hétérogénéités élastiques' de plus petites tailles dans les verres stables

Networks of molecular liquids ? Role of Hydrogen Bonds Auto-association of alcohols

water : 17 cristalline phases

1ethyl 2hexanol MD analysis 300K: Partial radial distribution function involving O -H atoms

Evidence of various length scales, showing cluster formation

1ethyl 2hexanol static structure factor at Patm

Same remarkable feature: a well defined prepeak

Fully deuterared sample Elastic neutron scattering Fully hydrogenated Xray scattering

mHz

Prior work by Richert and Böhmer over the last years

The largest ratio $\tau D/\tau \alpha$

GHz

Role of Hydrogen Bonds in solutions Water + alcohol, aminoacids...

lower hydrophobicity better to delay nucleation and retard growth, working by disrupting the water hydrogen bond network,

Water + glycerol phase diagram case 1 : strongly hydrophilic alcohol

Inaba (2007)

Figure 1. Excess molar volumes of glycerol + water mixtures at several temperatures. (♦): 288.15 K; (■): 293.15 K; (▲): 298.15 K; (♦): 303.15 K.

aboratoire Léon Brillouin

Tanaka (2012) mais dans Nat mat

Water + monoalcohol phase diagram case 1 : partly hydrophobic alcohol

Clathrates

GT is a combination of cooperative effects and local, molecular ones.

The local structure is distinct from that of the crystal

the molecular details play a fundamental role in its dynamics (de Gennes, Narrowing, rigid vs flexible)

The high T behavior, the ability to form a glass etc.... results from the combination of

- the strength of the intermolecular interactions, attraction, dispersion
- the shape of the molecule,

- the short-range (spatial) correlations associated with the local arrangement of the molecules in the liquid.

The simplest system that forms a glass is a **molecule**, with a reduced number of partial contributions to S(Q), a simplified the shape keeping intrinsic and self generated disorder.

It presents a low activation energy at high Temperature and very high fragility. No increase in static correlation length while dynamical ones varie by a factor of 3 to 4.

