Z

Oxide-Based Cellular Ceramics Monolithic Honeycombs Used in Catalysis and Filtration applications

Jean-Jacques Théron Corning European Technology Center Avon, France

November 14, 2013

Outline

- Introduction Corning Overview
- Cordierite monoliths for gasoline engine automotive catalytic converters application
- Oxide-based Diesel Particulate Filters (DPF) applications
- High surface area oxide-based ceramics honeycombs for other applications
- Conclusions

Corning European Technology Center 2013 Overview

Corning Incorporated

Founded:

1851

Headquarters:

Corning, New York

Employees:

~29,000 worldwide

2012 Sales:

\$8.0B

Fortune 500 Rank (2012): 328

- Corning is the world leader in specialty glass and ceramics.
- We create and make keystone components that enable high-technology systems for consumer electronics, mobile emissions control, telecommunications, and life sciences.
- We succeed through sustained investment in R&D, 160 years of materials science and process engineering knowledge, and a distinctive collaborative culture.

Corning Market Segments and Additional Operations

Display Technology	Telecom	Environmental Technologies	Life Sciences	Specialty Materials	Other Products and Services
 LCD Glass Substrates Glass Substrates for OLED and high-performance LCD platforms 	 Optical Fiber and Cable Hardware and Equipment Fiber optic connectivity products 	 Emissions Control Products Light-duty gasoline vehicles Light-duty and heavy-duty on-road diesel vehicles Heavy-duty non- road diesel vehicles Stationary 	 Cell Culture and Bioprocess Assay and High- Throughput Screening Genomics and Proteomics General Laboratory Products 	 Corning[®] Gorilla[®] Glass Display Optics and Components Optical Materials Semiconductor materials Specialty fiber Polarcor™ Optics Aerospace and Defense Ophthalmic 	 Emerging Display Technology Drug Discovery Technology New Business Development Equity Companies Cormetech, Inc. Dow Corning Corp. Eurokera, S.N.C. Samsung Corning Precision Materials Co., LTD (SCP)

Centralized R&D Campus: Corning, New York

Designed to integrate our technical capabilities and create keystone components

Sullivan Park Connected Globally in Europe, Asia and the U.S. West Coast

Corning West Technology Center Silicon Valley, California

Corning European Technology Center Corning Advanced Technology Center Fontainebleau, France Taipei, Taiwan Corning Scientific Center St. Petersburg, Russia

Fontainebleau-Avon, France

Corning European Technology Center – Founded in 1968

- 185,000 sq. ft.
- Materials & process focus
- Most core
 technologies
- Pilot plant
- ≈100 permanent employees

CETC business collaborations

Most of Corning's businesses are present at CETC today

Cellular ceramics honeycombs

- Catalyst support for air-pollution control
 - Mobile emissions
 - Automotive catalytic converter & Diesel Particulate Filters
 - Stationary emissions
 - Reduction of NOx emission from power plants

Cordierite ceramic honeycomb based catalytic converters

 Flow through chemical reactor integrated in the exhaust pipe

Fig. 1

Fig. 2

- Convert CO, HC and NOx into N₂, H₂O and CO₂
- Technology and process invented in the mid 1970's

R.D. Bagley, Method of Forming an Extrusion Die - US Patent 3803951A,1974

I.M. Lachman and R.M. Lewis, Anisotropic Cordierite Monolith - US Patent 3,885,977a, 1975.

CTE (ca)

CTE(co

National Medal of Technology

Corning Incorporated

Environmental Technologies

2003

R.D. Bagley I.M. Lachman R.M Lewis

Monolithic porous ceramics as catalyst substrates for air pollution control

 Monolithic or honeycombs materials have a pressure drop advantage over conventional pellet-shaped catalysts

Monolithic porous ceramics as catalyst substrates for air pollution control

 Monolithic or honeycombs materials offers a higher relative geometric surface area than conventional pellet-shaped catalysts

Monolithic Converter System

Monolithic porous ceramics as catalyst substrates for air pollution control

- Ceramic monoliths have well designed pore structure (3-4 µm pores) which allow chemical and mechanical bonding to the washcoat:
 - High surface area carrier such as AI_2O_3
 - Further impregnated with a catalytic component such as Pt

Farrauto et al., Catalysis Today, 51,351-360,1999

Cordierite as a macro-cellular body for exhaust catalyst support : Celcor®

- Extruded synthetic Cordierite 2MgO•2Al₂O₃•5SiO₂
 - Thermal shock resistance
 - Can be made with very low CTE < 10.10⁻⁷/°C
 - Proper crystal orientation and micro-cracks development
 - Mechanical strength
 - Typical monolith axial strength > 3000 psi
 - High Melting point: >1300°C
 - Catalyst compatibility as a catalyst support
 - Pore structure to allow chemical and mechanical bonding to the washcoat
 - No migration of chemical component in the ceramic into the catalyzed washcoat
 - High volume throughput via low cost extrusion

Cordierite Thermal Expansion

Influence of Crystal Orientation & Micro-cracks Engineering Strain as a Function of Temperature

High volume extrusion process

Williams et al., 17th Nat. Symposium on catalysis, Bhanagar, 2005

Monolith Properties can be Tailored for Optimum Catalyst and Reactor Performance

Reduction of the Wall Thickness

Gulati, SAE comm. 99001, SAIT Puna, 1999

Advanced substrates reduce emissions

Health Risks of Diesel Particulate Matter

Sample	Mutagenicity	DNA Damage	Chromosomal Damage
Diesel PM	+	(+) toxic	
Gasoline PM	+	+	+
Diesel SVOC	weak	143	
Gasoline SVOC	weak	(+) toxic	ं+

SVOC: semi-volatile organic compound

W. Wallace, US Department of Energy Diesel Engine Emission Reduction Conference, San Diego, August 2002.

Typical Diesel Particle Size Distribution

PM & NOx Emissions Legislation for Passenger Cars

EU 6: 6x10¹¹#/km PM and 4.5 mg/km

Current and Future HDD Emissions Legislation

New challenges are being posed by Diesel Particulate Filters

CORNING | Science & Technology – CETC

Filtration and Soot Loading

"Uncontrolled" Regeneration

- Hot filter, low exhaust flow rate, high oxygen concentration
- Catalysts and filters can get too hot (below) or experience too large of a temperature gradient (results in cracking)

10 Cycle Durability Study-Run 8 NZP PN-14 200/17 G-6016-3 @ 17.8 g/l

Cutler & Merkel, SAE 2000-01-2844

Uncontrolled Regeneration Survivability Issues

Filter requirements *Materials properties*

- Thermal shock resistance
 - Low CTE
 - Low elastic modulus
 - High strength

- Engineered pore structure
 - Porosity and pore size and distribution
 - Filtration efficiency
 - Pressure drop Fuel penalty CO₂ emissions
 - Strength
- High melting temperature

Porosity engineering in non-oxide ceramics

High heat capacity porous ceramics generally exhibit "high" thermal expansion...

Porous Material	T _{melt} (°C)	T _{max} (°C) Est. use in air	CTE _c (x10 ⁻⁷ /°C)	Intrinsic Density (g/cm ³)	Specific Heat @ 500°C (J/g°C)	Thermal Conductivity @ 500°C (W/m K)
A lumina (Al ₂ O ₃)	2050	1900	88	3.97	0.88	~8
Cordierite (Mg ₂ Al ₄ Si ₅ O ₁₈)	1460	1350	6	2.51	1.11	~1
Mullite (AkSi2O13)	1810	1600	53	2.50	1.15	~2
Aluminum Titanate (TiO ₂ -Al ₂ O ₃)	1600	1500	10	3.40	1.06	~1
NZP (XZr ₄ P ₆ O ₂₄ , X=alkaline earth)	1900	1800	5	3.44	0.75	~1
∝ Silicon Carbide (SiC)	2400	1350	45	3.24	1.12	~20
β-bonded α- Silicon Carbide (SiC)	2400	1350	45	3.24	1.11	~12
Si-bonded α -Silicon Carbide (Si-SiC)	1400	1350	43	3.19	1.12	~10
Silicon Nitride (Si ₃ N ₄)	1900	1350	30	3.0	1.15	~5

W.A. Cutler, Ceram. Eng. SCi. Proc., 25[3] 421-430, 2004

High heat capacity low expansion oxides for monolithic filters

Ogunwumi et al., 28th Int. Cocoa Beach conference on Advanced Ceramics and Composites, 2004

Extruded High surface area catalysts

- Extruded Vanadia Titania for SCR deNOx
- Zeolites
 - Extruded substrates
 - Membranes
- Extruded iron oxide catalysts
- Extruded γ-alumina
 - Catalyst support

Stationary Emissions Control - DeNOx

- Monolithic V₂O₅/TiO₂ catalysts are the standard in today's largest fixed bed catalyst application – SCR reactors
 - Main active component is V_2O_5
 - WO₃ increases thermal stability
 - Reactor volumes from 500 m³ - 1200 m³
 - Selective catalytic reduction of NOx $4NH_3 + 4NO + O_2 ---> 4N_2 + 6H_2O$

SCR Catalyst for Coal, Oil and Gas Applications

EPA/EPRI Symp. On Stationary Combustion NOx Control (1995)

Zeolite honeycomb Hydrocarbon Adsorption During Engine Start

Significant amount (>80%) of cold start HC is adsorbed on Zeolite honeycomb Patil, Williams et al. SAE 960348

Potassium Promoted Iron Oxide

 Catalyst used for the dehydrogenation of Ethylbenzene to Styrene

- When suitable colloidal polymers are used to adjust the batch rheology it can be extruded to monoliths
 - Surface Area 3-4m2/g
 - Porosity 50-60%
 - Pore Size 330-400nm
 - Crush Strength >1300psi

Addiego et al, Catal. Today, 69(2001) 25

Extruded γ -Alumina with engineered porosity

 Cell density, surface area, and porosity tailored to the application

• Example properties

Sample	Surface Area (m²/g)	% Porosity	%Pore Size >1000Å
A	240	64	2
В	228	64	12
С	190	68	31

Addiego et al., 28th Int. Cocoa Beach conference on Advanced Ceramics and Composites, 2004

Conclusions

- Extruded synthetic Cordierite with low CTE has been successfully used as macro-cellular body for exhaust catalyst support during the last 30 years
- Ceramic filters have successfully been applied to Diesel Particulate Filters with active regeneration for 20 years and extensively during the last 10 years
 - Challenges to use oxide ceramics for this particular demanding application have been overcome
- The use of oxide cellular ceramics honeycombs as high surface area extruded catalyst remains an active area of research with many promising applications in the future for remediation of both mobile and stationary emissions as well as for use as structured catalyst in the chemical processing industry

CORNING