Some Interesting Observations on Oxygen Environments in Silicate Glasses with Implications for the Fitting of the High Frequency Raman Envelope

Grant S Henderson¹, H. Wayne Nesbitt², G. Michael Bancroft³

¹Department of Earth Sciences, University of Toronto, Canada ²Department of Earth Sciences, University of Western Ontario, Canada ³Department of Chemistry, University of Western Ontario, Canada

 M_2O-SiO_2 binaries: M = Li, Na, K, Rb, Cs

 $MO-SiO_2$ binaries: M = Ca, Mg

<u>Alkali silicates</u>

<u>Network formers (Si, Al). Atoms</u> that link together with BO to form network (form BOs).

<u>Network modifiers (</u>Alkalis, Alkaline-earths). Atoms that break BOs to disrupt the network (create NBOs)

Qⁿ species (•): n= # of bridging oxygens (BO)

Q⁴ 35 possible arrangements

Q³ 20 possible arrangements

Proposed Oxide Glass Structures

Proposed Structure of Sodium Silicate Glass

Conventional thinking: Glasses have

- BO: Si-O-Si, O bonds to 2 network former
 NBO: Q¹, Q², Q³, Q⁴ plus combinations: Si-O, O bonds to 1 network former
- No free oxygen (O²⁻): O not bonded to a network former (example: Na₂O)

<u>Recent Studies</u> : Glasses have

- ➢ NBO: Q¹, Q², Q³, Q⁴ plus combinations
- **BO:** 2 or more types (BO, MBO, MBOM, M₃BO)
- Free oxygen (O²⁻) can be present at mol% levels
- > Polymerization of melt generates O²⁻
- Changes interpretation of NMR/Raman spectra of glasses and melts?

a) Disproportionation Reactions $2Q^n \Leftrightarrow Q^{n-1} + Q^{n+1}$ e.g. $2Q^3 \Leftrightarrow Q^2 + Q^4$ **No Change in polymerization! b)** Polymerization Reactions $2Q^3 \Leftrightarrow Q^4 + 2Na + Q^{2-}$ **Change in polymerization** $BO + O^{2-}$ (Na₂O) \Leftrightarrow 2NBO⁻

O²⁻ = "free oxygen" = Non-network oxygen

Meyer et al., 2004, Channel Formation and Intermediate Range Order in Sodium Silicate Melts and Glasses, PRL, 93, 027801.

Near channels and alkalis there will be a range of BO environments shown on right:

NBO
 K-BO-K (MBOM)
 K-BO (MBO)
 BO

- 5) BO
- 6) Si

Away from the channels the rest of network has regular BO interactions

Channel Structure?

Probability of finding oxygen atoms NOT BONDED to Si is high

Called "free oxygen"

Nesbitt, Bancroft, Henderson, Ho, Dalby, Huang, Yan (2011), JNCS, 357, 170-180.

Part II, Quantification of O 1s Spectra: -- Evaluation of Peak Areas

Errors Associated with Symmetric Fits

Effect of State of Matter on Linewidths

Part III: To Evaluate Oxygen Speciation in Binary Silicate Glasses

BO = Si-O-Si moiety; NBO = Si-O-M moiety: O^{2-} = free oxygen = M-O-M moiety

Mass Balances and Thermodynamic Constraints

BO, NBO and O^{2-} are related through the reaction:

BO + O²⁻ → 2NBO

and the mass action equation:

 $K_1 = (NBO)^2 / \{(BO)(O2-)\}$

where brackets = activities

To Determine $X_{BO},\,X_{NBO}$ and X_{O2}

 Measure areas under the BO and NBO+O²⁻ peaks and from these areas determine the Mole Fraction of BO (X_{BOm}).

2) Calculate X_{BO} expected assuming the above reaction goes to completion. (i.e. X_{BO}* = (2X_{SiO2} - X_{K2O})/(2X_{SiO2} + X_{K2O}) where X_{SiO2} and X_{K2O} are mole fractions in the binary system).

3) Compare X_{BOm} to X_{BO}^*

a) If $X_{BOm} < X_{BO}^*$ then the peak areas measured are incorrect. b) If $X_{BOm} = X_{BO}^*$ then the reaction has gone to completion

c) If $X_{BOm} > X_{BO}^*$ then the reaction did not go to completion and there is free oxygen in the glass where X_{O2-} equals the amount for excess BO (i.e., $X_{BOm} - X_{BO}^*$)

4) X_{NBO} is calculated by difference (i.e., $X_{\text{NBO}} = 1.0 - X_{\text{BO}} - X_{\text{O2-}}$)

from Sawyer et al. (2014) Can. Jour. Chem. v.92, p. 1-14.

Part III: Oxygen Speciation in Binary Silicate Glasses

Oxygen Speciation in Na-Silicate Glasses

Consistency Of Results

Experimental: Two O 1s XPS experiments and a 29 Si MAS NMR experiment yield similar X_{BO} results.

Thermodynamic: Within exptl. uncertainty the X_{BO} values conform to the mass action equation where the conditional equil. constant $(K_1) \sim 14$.

Conclusion

 X_{BO} values are consistent with the presence of some free oxygen in Na-silicate glasses and indicate ~ 1-2 mol% O²⁻ in Na-disilicate glasses and increasing to ~ 4-6 mol% O²⁻ at the metasilicate composition.

Data from Nesbitt et al., (2011) J. Non-Cryst. Solids, v. 357, p. 170. and Matsumoto et al. (1998) Jour. Ceramic Soc. Japan, v. 106, p. 415.

Na₂O-SiO₂ glasses must have O²⁻ present: Channels, NMR, thermodynamics/mass balance, MD

0.1% in 10 mol% Alkali, 3-6% in 50 mol% glasses

O²⁻ is under NBO

But don't see significant increase in FWHM

Can we see it?

PbO-SiO₂ glass can be made with very high amounts of PbO. Should have large amounts of O^{2-} (>30%).

FWHM of NBO peak increases with increasing PbO.

Determining the Mole Fractions of Oxygen Species in Binary Silicate Glasses

Fitting & Interpretation of O 1s Peaks

O 1s XPS Spectra of Pb-Silicate Glasses

a: Two unconstrained peaks introduced
Test : FWHM conform to theoretical value of 1.25 +/- 0.1 eV.

b: BO peak constrained to 1.22 eV and NBO+O²⁻ was unconstrained.

c: BO peak constrained to 1.22 eV and NBO+O²⁻ was unconstrained. An unacceptably large FWHM is obtained and needs explanation.

d: BO and NBO constrained to 1.22 eV. A third unconstrained peak was fitted.

Interpretation: Broadened peak in 'c' is due to a very strong O²⁻ signal.

From Dalby et al. (2007) GCA, v.71, p. 4297, and Nesbitt et al. (2015), Am. Min. 100, 2566..

Spectroscopic and Thermodynamic Tests for Consistency

Spectroscopic Consistency BO abundances obtained from ²⁹Si MAS NMR measurements (Fayon et al. (1998) are plotted as squares.

BO abundances from O 1s XPS results (Dalby et al., 2007) are plotted as shaded circles.

Thermodynamic Consistency

The NMR and XPS results are consistent with the mass action equation $(K_1 \sim 12)$ and the consistency holds over a large compositional range.

Mole fractions of BO, NBO and O²⁻ were used in place of activities so that K1 is a conditional equilibrium constant.

Evaluation of Free Oxygen For each measured XBO value, K1 = 12, and the reaction stoichiometry, a X_{O2} has been calculated and is plotted.

Some observations

Free oxygen widely accepted in glass and materials science communities. Existence is denied by Earth science community

13 separate Raman and NMR studies of Mg/Ca silicate glasses indicate the presence of free oxygen (O²⁻)
23 separate NMR and Raman studies indicate its presence in alkaline earth silicate glasses
21 numerical simulations on alkaline-Earth glasses indicate free oxygen

All indicate ~1-2.6 mol% in metasilicate glasses and ~5-10 mol% in orthosilicate glasses.

What is the importance of "free" oxygen (O²⁻)?

For over 100 years no mechanism to explain melting of silicate minerals

Proposed mechanism involving "free" oxygen (O²⁻)

- 1) Breaking of weak M-O bonds prior to melting, to produce itinerant M⁺ and Si-O⁻ moieties attached to chains
- 2) Reaction of Si-O⁻ to form cross-chain linkages which produces free oxygen (O²⁻)
- 3) Reaction of O²⁻ with SiO₃ chains to depolymerize (rupture) them causing melting.
- 4) O²⁻ plays essential and critical role in melting and crystallization of silicate minerals!

Nesbitt, Bancroft, Henderson, Richet, O'Shaughnessy, Melting, crystallization, and the glass transition: Toward a unified description for silicate phase transitions, Am Min 102, 412, 2017

Heat Capacity (Cp) exhibits inflexion before melting point Implies pre-melting phenomenon

Richet et al., 1996 Phys. Chem. Mineral., 23, 157. Richet et al., 1998 Phys. Chem. Mineral., 25, 401.

Similarity between NMR and Raman spectra Q^2 dominate spectra $Q^3 > Q^1$

Nesbitt et al., 2011, JNCS, 357, 170. Frantz and Mysen, 1995, Chem. Geol. 121, 155.. Fig. 3 Richet et al., 1998, Phys. Chem. Mineral., 23, 157.

Pre-melting reactions $2Q^2 \rightarrow 2Q^3 + 2Na^+ + O^{2-}$ indicated by Q³ in Raman Q³ form in a/b plane, prevent expansion Si-O⁻ + Q² \(\equiv [(Si-O-Q²)-]\) \(\prod \) \(\to 2Q^3 + Na^+ + O^{2-})

Melting Reaction

$$2\mathbf{Q}^2 + \mathbf{O}^{2-} \rightleftharpoons \operatorname{SiO}_5 \ddagger \to 2\mathbf{Q}^1$$

What about the presence of MBOs?

Theoretical line widths (FWHM) of O 1s spectra in all glasses should be ~1.25 eV

Observed line widths (FWHM) of O 1s spectra in silicate glasses are 1.22- 1.26 eV

Observed line widths (FWHM) of O 1s spectra in silicate glasses close to theoretical FWHM!

BO FWHM increases with increasing alkali (1.26 to 1.57 eV)

Suggests that 2nd BO species present (MBO)

Two peak (BO, MBO) fit with both FWHM constrained to 1.25 eV: MBO>BO

Will affect density and volume of magma and ascent rates

Nesbitt, Henderson, Bancroft, Ho (2015), JNCS, 409, 139-148.

- Crystal structure of K₂Si₂O₅ (de Jong et al (1998) Acta Cryst, B54, 568) has 15 unique oxygen sites
- With cutoff of 3.25Å have 1 BO-K, 6 BO-2K, 2 BO-3K
- BE will decrease as K atoms approach BO
- Fit has approximate ratio of 1:6:2
- BO peaks are consistent with MBO combinations derived from crystal structure.
- Does approach of alkali to BO affect Raman and NMR frequencies of Q species? E.g., increase in Q⁴ intensity.

Nesbitt et al., 2017a, Chem Geol, in press

The addition of small amounts of alkali greatly increase Q⁴ A₁ band intensity.

Why?

Raman Spectral Fitting and Interpretation

Three main types of fitting procedures

- Fitting of spectral envelope with well constrained Gaussian peaks with well recognized peak positions for Q species: Q⁰, Q¹, Q², Q³ (~850, 900, 970, 1100 cm⁻¹) and Q⁴
 - a) Dominant peaks of the crystal spectrum appear in the glass spectrum
 - b) All fits yield more than the minimum number of peaks for the possible Q species
 - c) Often the FWHM of the fitted peaks vary widely
 - d) Peaks usually fit with Gaussian peaks
- 2) Partial Component Analysis (PCA): Use many Raman spectra of different compositions, no a priori control of line widths, shapes or positions.
 - a) Ca silicate glasses produces split peaks over 100 cm⁻¹ apart (Q³ and Q²)
 - b) Q^1 is split into 3 peaks with a total width of 150 cm⁻¹
- 3) Variation of first method: peak widths constrained. However, extra peaks still have to be fit

Same composition WL37.5 (CaO-SiO2)

Some Raman observations

- Q species Raman bands are independent of alkali composition and type of alkali.
- Raman bands assigned to Q species are essentially always at same Raman Shift (cm⁻¹). We know where the Q species bands are.
- The addition of small amounts of alkali greatly increase Q⁴ vibrational band intensity
- > Q species frequency depends on the number of BOs

Other alkalis

- Q²/Q³ ratio: Cs₂O<Rb₂O<K₂O<Na₂O
- X intensity: Cs₂O/Rb₂O
 K₂O/Na₂O
- Q3' at 35 mol% Na₂O
 25 mol% K₂O/Rb₂O
 20 mol% Cs₂O

5 mol% Na₂O-GeO₂

- 2-peak fit doesn't account for shoulder
- Requires 4 peak fit with Q² and Q³

- dominant Q species in crystals is the one observed in comparable glasses (with additional peaks); No effect crystal vs glass
- No effect of mass on frequencies (for alkali and alkaline-earths).
- Strong correlation between frequency and composition
- Alkali oxide concentration determines type of Q species but <u>frequency depends on the</u> <u>number of NBOs.</u>

- Si 2P chemical shift near linear with composition
- Q frequencies related to electronic charge in the valence band
- Perturbation of the electron density over an atom in the Si tetrahedron results in changes to the coulombic interactions and force constants.

- Na transfers 3s electron to NBO
- Transfer of NBO fractional charge to Si (via sp³) and redistribution around other BO (via σ)
- This (total number of electrons transferred) determines Qⁿ frequency
M-BO Q⁴ tetrahedra have: 2 sites with T_d symmetry 2 sites with C_{3V} symmetry 1 site C_{2V} symmetry

Possibilities expand with M-BO-M etc.

Effect on Q vibrational band position, shape, numbers?

5 possible bands for Q⁴
4 bands with Q³
3 bands with Q²
2 bands with Q¹
1 band with Q⁰

At least 4 major questions must be addressed before we can fit spectra with confidence

- 1) Are all peaks in the 800-1200 cm⁻¹ region due to SiO₄ symmetric stretches (NBO vibrations of Q species)
- 2) Are these peaks at well defined energies (wavenumbers)
- 3) Are the linewidths for glasses and melts similar
- 4) What are the additional peaks due to?

FWHM taken from published spectra or fit by us. Line widths are accurate to ± 1 cm⁻¹ for crystals and < 3 cm⁻¹ for glasses and melts Investigated Q¹ and Q² peaks (well defined and separate) Peaks should be 100% Lorentzian in crystals (true)

Peak shapes in glasses are predominantly Lorentzian with some Gaussian component

80% Lorentzian/ 20% Gaussian (best fit for Na₂SiO₃).

Acceptable fits up to 30% Lorentzian and 70% Gaussian but depends on composition

Fitted linewidths have small sensitivity to large differences in Gaussian component

Temp (K)

Silicate FWHM increases from ~10 to ~40 cm⁻¹ at MP True for Q⁰⁻³ Similar for phosphates, sulphate and germanate glasses All linewidths for all crystalline materials are very similar at a given T regardless of chemical composition

Glasses versus Melts

Linewidths for 3 glasses and melts are within 10cm^{-1} for all T: $\text{Na}_2\text{Si}_2\text{O}_5$ and $\text{K}_2\text{Si}_2\text{O}_5$ glasses, 45 and 35 cm⁻¹ at 298K, 72 and 64 cm⁻¹ at 1270K

Glass/melt linewidth much larger than crystalline compounds: ~35-45 cm⁻¹ glasses, 5-10 cm⁻¹ crystals (well known): Q¹ Na₂SiO₃ (g) 35 cm^{-1,} Na₂SiO₃ (m) 62 cm⁻¹

No significant increase in FWHM at Tg

Like crystalline silicates the glass/melt FWHM only depends on T

At least 4 major questions must be addressed before we can fit spectra with confidence

- 1) Are all peaks in the 800-1200 cm⁻¹ region due to SiO₄ symmetric stretches (NBO vibrations of Q species). YES THEY ARE for Q⁰⁻³
- 2) Are these peaks at well defined energies (wavenumbers). YES THEY ARE

3) Are the linewidths for glasses and melts similar YES THEY ARE. All Lorentzian (some Gaussian component) with FWHM well defined at a given T

4) What are the additional peaks due to? MBO vibrations associated with Q⁰⁻³

A more detailed investigation of the temperature dependence of the Raman shift (Ω) and FWHM at temperature (T).

Use Balkanski et al., 1983 to model Raman shifts (Ω) and FWHM at different Ts for metasilicate minerals

$$\Omega(T) = \omega^* + C[1 + 2/(ex - 1)] + D[1 + 3/(ey - 1) + 3/(ey - 1)2]$$
(1)

C and D are constants, ω^* is the Einstein frequency of the Raman shift, x = $h\omega^*/2kT$, y = $h\omega^*/3kT$, h is Planck's constant and k is Boltzmann's constant. Also, $h\omega^*/k$ = the Einstein temperature (θ E) for the Raman oscillator, and the terms 2/(ex - 1) and 3/(ey - 1) are closely related to the average energy of the Raman oscillator (ϵ R) at thermal equilibrium (ϵ R = $h\omega^*/(eh\omega^*/kT - 1)$). Expansion of the equation and collection of constants yields:

$$\Omega(T) = \Omega^*(0) + C[2/(ex - 1)] + D[3/(ey - 1) + 3/(ey - 1)2]$$
(2)

where $\Omega^*(0)$ is the Raman shift at absolute zero and is equal to ω^*+C+D .

Balkanski, M., Wallis, R.F., and Haro, E. (1983) Anharmonic effects in light scattering due to optical phonons in silicon, Phys. Rev B 28, 1928-1934

The temperature dependence of FWHM:

$$FWHM(T) = A[1 + 2/(ex - 1)] + B[1 + 3/(ey - 1) + 3/(ey - 1)2]$$
(3)

where FWHM(T) is the linewidth at temperature T and A and B are constants.

Other terms are as for Equation (1). Expansion of the equation and collection of the constants yields:

where FWHM*(0) is the linewidth at absolute zero and is equal to A+B. The constants, ω^* , A, B, C and D must be evaluated from experimental data.

Temperature dependence of the Q² band position in four metasilicate, minerals (a,b) modelled using Eqn 1,
c) Best fits standardized to 298 K, error bars ± 1cm⁻¹

Temperature dependence of the Q² FWHM in four metasilicate, minerals (a,b) modelled using Eqn 1, c) Best fits standardized to 298 K. Error bars are $\pm 2 \text{ cm}^{-1}$

Temperature dependence of the Q⁰ band position for forsterite in four metasilicate, minerals (a,b) modelled using Eqn 1, c) Best fits standardized to 298 K, error bars ± 1 cm⁻¹

If we know FWHM at RT can predict FWHM at higher Ts.

FWHM has a linear dependence on T

O'Shaughnessy, Henderson, Nesbitt, Bancroft, Neuville, 2017, in prep

Fig. 4. Heats of formation (298 K) from the simple oxides for crystalline silicates, in kJ per one mole of oxide.

From Stebbins, 2016, reproduced from Hess 1995.

$$a_{Na2O} = (a_{Na+})^2 (a_{O2-})$$

There is no obvious relationship between the Heats of Formation of crystalline binary phases and the activity or mole fraction of free oxygen. This has been demonstrated long ago by Fraser (1975; 1977)

Hess, 1995, Reviews in Mineralogy and Geochemistry, 32, 145 Stebbins 2016 Chem Geol, preprint Fraser 1975, GCA 39, 1525

Quote from Fraser (in Thermodynamics of Silicate Melts 1977, p. 318)

"The curves (in the figure) are of some interest because the cation effect (on free oxygen) is the opposite of that which might be predicted from studies of the effects of cation polarizing power" (ie., Z/r^2 , also referred to as cation field strength).

Referring to the polymerization reactions:

 $2NBO \cdot BO + O^{2-}$

Hess (1971) argues that the product side of the reaction should be favoured by cations with high field strength (i.e., greater Z/r^2 values) so that X_{O2} should be greater in Mg-bearing melts and glasses than in Ca-bearing systems.

The above experimental results demonstrate that the prediction is incorrect and that one cannot predict free oxygen (or oxide ion) activities or mole fractions based on cation field strength.

XPS O 1s Spectra of Na-Silicate Glasses

Spectral Peaks

2 O 1s Peaks: BO and NBO+O²⁻ 1 Auger Peak: Na KLL

Results: for all compositions X_{BO} is greater than expected if the following reaction had gone to completion:

BO + O²⁻ → 2NBO

The excess BO must be matched by an equal excess of O²-. Measurement of X_{BO} alone is sufficient to determine X_{O2-} in a glass or melt.

Implication: there is free oxygen in the Na-silicate glasses.

from Nesbitt et al., (2011) J. Non-Cryst. Solids v. 357, p. 170.

Oxygen Speciation in Na-Silicate Glasses

Consistency Of Results

Experimental: Two O 1s XPS experiments and a 29 Si MAS NMR experiment yield similar X_{BO} results.

Thermodynamic: Within exptl. uncertainty the X_{BO} values conform to the mass action equation where the conditional equil. constant $(K_1) \sim 14$.

Conclusion

 X_{BO} values are consistent with the presence of some free oxygen in Na-silicate glasses and indicate ~ 1-2 mol% O²⁻ in Na-disilicate glasses and increasing to ~ 4-6 mol% O²⁻ at the metasilicate composition.

Data from Nesbitt et al., (2011) J. Non-Cryst. Solids, v. 357, p. 170. and Matsumoto et al. (1998) Jour. Ceramic Soc. Japan, v. 106, p. 415.

Proposed Oxide Glass Structures

Proposed Structure of Sodium Silicate Glass

Some Raman observations

- Q species Raman bands are independent of alkali composition and type of alkali.
- Raman bands assigned to Q species are essentially always at same Raman Shift (cm⁻¹). We know where the Q species bands are.
- Q⁴ band intensity increases when alkalis present
 CN of Na is NOT 1 when Si-O-Na formed: 5-6. Na-BO
 > BO. Effect on NBO Q species vibrations?

Raman Fitting Issues

Q species bands are always in the same positions
 Can assign Q species bands but then have extra bands. What are they?

Problems

Don't know FWHM of bands
 Have not considered the influence of MBO on Q species vibrations

Heat Capacity (Cp) exhibits inflexion before melting point Implies pre-melting phenomenon

Richet et al., 1996 Phys. Chem. Mineral., 23, 157. Richet et al., 1998 Phys. Chem. Mineral., 25, 401.

Similarity between NMR and Raman spectra Q^2 dominate spectra $Q^3 > Q^1$

Nesbitt et al., 2011, JNCS, 357, 170. Frantz and Mysen, 1995, Chem. Geol. 121, 155.. Fig. 3 Richet et al., 1998, Phys. Chem. Mineral., 23, 157.

Pre-melting reactions $2Q^2 \rightarrow 2Q^3 + 2Na^+ + O^{2-}$ indicated by Q³ in Raman Q³ form in a/b plane, prevent expansion Si-O⁻ + Q² \(\equiv [(Si-O-Q²)-]\) \(\prod \) \(\to 2Q^3 + Na^+ + O^{2-})

Melting Reaction

$$2\mathbf{Q}^2 + \mathbf{O}^{2-} \rightleftharpoons \operatorname{SiO}_5 \ddagger \to 2\mathbf{Q}^1$$

BO FWHM increases with increasing alkali

Suggests that 2nd BO species present (MBO)

Two peak (BO, MBO) fit with both FWHM constrained to 1.25 eV: MBO>BO

Will affect density and volume of magma and ascent rates

Nesbitt, Henderson, Bancroft, Ho (2015), JNCS, 409, 139-148.

Crystalline β -Na₂Si₂O₅/Na₂SiO₃ : Only have Na-BO or Na-BO-Na linkages Crystalline α -Na₂Si₂O₅ : has BO and Na-BO in 1:2 ratio Si-BO bond length increases from 1.61 to 1.67 Å going from BO \rightarrow BO-Na \rightarrow Na-BO-Na

- 1. Si-NBO bonds are shorter than Si-BO bonds
- 2. both Si-NBO and Si-BO bonds get longer as Na content increases
 - note: average Si-O bond remains constant

Unpublished data courtesy of Gavin Mountjoy

Some observations

>Do channels exits? No real experimental evidence

Some observations

Do channels exits? No real experimental evidence
 If so why are experimental data not interpreted in terms of channel model?
Some observations

- Do channels exits? No real experimental evidence
 If so why are experimental data not interpreted in terms of channel model?
- Free oxygen widely accepted in glass and materials science communities. Existence is denied by Earth science community
- Q species Raman bands are independent of alkali composition and type of alkali.
- $> Q^4$ band intensity increases when alkalis present
- Na-NBO: Doesn't mean Na has CN=1. Na-BO > BO
- Same composition fit multiple ways by same authors.

Conventional thinking: Melts have

BO
NBO: Q¹, Q², Q³, Q⁴ plus combinations
No free oxygen

<u>Recent Studies</u> : Melts have

- ➢ BO: 2 or more types (BO, MBO, MBOM, M₃BO)
- Changes interpretation of NMR/Raman spectra of glasses and melts
- ➢ NBO: Q¹, Q², Q³, Q⁴ plus combinations
- Free oxygen (O²⁻) can be present at mol% levels
- > Polymerization of melt generates O²⁻

Part II: O 1s Spectra of K-Silicate Glasses near the Disilicate Composition

Peaks are effectively symmetric, well resolved and peak areas can be accurately measured.

²⁹Si MAS NMR Spectra for Na-Silicate Glasses

Spectral Peaks

All fitted peaks were Gaussian in shape.

All glasses indicate an excess of BO over that expected if the following reaction went to completion.

BO + O²⁻ → 2NBO

implying the presence of free oxygen.

from Nesbitt et al., (2011) J. Non-Cryst. Solids v. 357, p. 170.

Difference in peak Q³M-Q³ intensity

What is the importance of "free" oxygen (O²⁻)?

For over 100 years no mechanism to explain melting of silicate minerals

Proposed mechanism involving "free" oxygen (O²⁻)

- 1) Breaking of weak M-O bonds prior to melting, to produce itinerant M⁺ and Si-O⁻ moieties attached to chains
- 2) Reaction of Si-O⁻ to form cross-chain linkages which produces free oxygen (O²⁻)
- 3) Reaction of O²⁻ with SiO₃ chains to depolymerize (rupture) them causing melting.
- 4) O²⁻ plays essential and critical role in melting and crystallization of silicate minerals!

Heat Capacity (Cp) exhibits inflexion before melting point Implies pre-melting phenomenon

Richet et al., 1996 Phys. Chem. Mineral., 23, 157. Richet et al., 1998 Phys. Chem. Mineral., 25, 401.

Similarity between NMR and Raman spectra Q^2 dominate spectra $Q^3 > Q^1$

Nesbitt et al., 2011, JNCS, 357, 170. Frantz and Mysen, 1995, Chem. Geol. 121, 155.. Fig. 3 Richet et al., 1998, Phys. Chem. Mineral., 23, 157.

Difference in peak Q³M-Q³ position

Summary

- **1)** Charging of silicate minerals and glasses has been circumvented by new charge neutralization technologies found on the new generation of XPS instruments.
- **2)** O 1s spectral lines can now be accurately fitted with symmetric line shapes. A 30:70 Gaussian-Lorentzian convolution is used to fit all our spectra.
- **3)** The O 1s XPS linewidths of silicates are effectively constant at ~ 1.25 +/- 0.1 eV. Widths greater than about 1.4 eV indicate that the peak is composite.
- **4)** O 1s XPS spectra of Pb-Silicate, Na-Silicate and K-silicate glasses indicate that free oxygen is present in glasses containing more than about 20 mol% counter oxide.
- **5)** Determination of O²⁻ abundance is important because its strong basicity makes it the most reactive of oxygen species in glasses and melts.

Moreover, there is a large reservoir of O^{2-} in glasses and melts in that free oxygen consumed by a reaction with reagents will be replaced by conversion of NBO to BO and O^{2-} according to the principle of Le Chatelier.

Part II: Vibrational and Phonon Broadening Controls Si 2p and O 1s Linewidths

Part II: Contributions to Si 2p and O 1s Spectral Linewidths

Si 2p and O 1s minimum linewidths are ~ 1.35 (± 0.1) eV and ~ 1.25 (± 0.1) eV respectively (Bancroft et al., 2009, Phys. Rev. B v.80, 075405)

Part II, Quantification of O 1s Spectra: -- Evaluation of Peak Areas

Errors Associated with Symmetric Fits

Effect of State of Matter on Linewidths

Part I, a Disadvantage: Difficult to Collect XPS Spectra of Insulators

Arsenopyrite (FeAsS) The Problem: Prior to the mid 1990's, XPS spectra of Arsenopyrite As 3d peak FWHM = 0.52eV (a semiconductor) insulators were difficult and often impossible to collect due to charging of surfaces. As 3d spectrum collected using no charge compensation. The Advance: Kratos Instruments developed an effective charge compensation system in the 1990's. Counts/sec Other manufacturers now have effective charge compensation systems. A Test: An As 3d spectra of a semiconductor (FeAsS) and an insulator (As₂S₃) were collected and the linewidths are identical for both using the Kratos charge Orpiment (As_2S_3) compensation system. (an insulator) As 3d spectrum of obtained using a traditional flood gun to neutralize the surface. 45 44 43 42 41 46 40 Binding Energy (eV) В Orpiment As 3d peak Orpiment As 3d peak FWHM = 0.80eV FWHM = 0.52eV From Nesbitt et al. (2004) Amer. Min. v.89, p.878. 45 44 43 42 41 46 45 44 43 42 47 46 41 40 Binding Energy (eV) Binding Energy (eV)

Part II, Effect of Bulk and Surface Peaks on O 1s Spectra

Part II, Treatment and Quantification of O 1s Spectra: -- Uncertainties

Analytical Uncertainties

Determination of BO% in Glass

- 1) The X-ray beam causes damage to glasses as shown in diagrams 'a' to 'd'.
- 2) A quadratic is fitted and the intercept is taken as the BO% prior to X-ray exposure.

Uncertain in an Individual Analysis

- 1) 5 or 6 spectra are collected for each glass.
- 2) Each is fitted and BO% determined.
- Deviations from the best fit are plotted on 'e' as a function of X-ray exposure time.
- 4) 3 standard deviation units plus the error associated with extrapolation indicates an uncertainty of ~1 mol% in BO.

Data from Sawyer et al. (2014), Can. Jour. Chem. v.92, p. 1-14.

Effect of the X-ray Beam on BO Abundances

"It can be seen from Fig.1 that the Raman spectrum of vitreous silica is highly temperature dependent below 100 cm⁻¹, but is only slightly temperature dependent in the higher frequency region above 300 cm⁻¹". (Hass 1970)

Hass 1969 Solid state communications 7, 1069-1071.

Crystalline sodium metasilicate (Na₂SiO₃₎ orthorhombic (Cmc2₁), McDonald and Cruickshank, 1967, Acta Cryst., 22, 37.

Chains cross linked by Na atoms

SiO₄ tetrahedra (all Q² tetrahedra) in chains along c-axis

a) XPS spectrum of BO and NBO of K₂O-SiO₂ glass

Clear discrimination of BO and NBO peaks

b) ²⁹Si MAS NMR spectrum of BO and NBO of K₂O-SiO₂ glass

Peaks must be curve fit to extract quantitative numbers

3Q MAS/F NMR spectroscopy

$2Q^3 \Leftrightarrow Q^2 + Q^4$ holds for Na₂O BUT NOT for K₂O glasses

Na-silicate

K-silicate

An Important Contribution: a ¹⁷O NMR of a CaMgSIO₄ Glass (first spectroscopic evidence for O²⁻ in silicate glass) The spectrum is after Nasikas et al. (2012) but no fit was provided.

Two peaks fit: FWHM constrained to observed and theoretical values

Observe ~34% O²⁻

Consistent with thermodynamic/mass balance arguments

Comparison of O 1s XPS and ¹⁷O NMR Results

Na₂O

- T₂ > A₁ below anomaly maximum
- $\mathbf{A}_{1} \mathbf{FWHM} > \mathbf{T}_{2}$
- Shoulder at 788 cm⁻¹ (Q²)
- ■Q² > Q³ up to anomaly maximum
- ■Q³ > Q² after anomaly maximum
- X observed at 10 mol%
- Maximum X at 20 mol%

What is the importance of "free" oxygen (O²⁻)?

For over 100 years no mechanism to explain melting of silicate minerals

Proposed mechanism involving "free" oxygen (O²⁻)

- 1) Breaking of weak M-O bonds prior to melting, to produce itinerant M⁺ and Si-O⁻ moieties attached to chains
- 2) Reaction of Si-O⁻ to form cross-chain linkages which produces free oxygen (O²⁻)
- 3) Reaction of O²⁻ with SiO₃ chains to depolymerize (rupture) them causing melting.
- 4) O²⁻ plays essential and critical role in melting and crystallization of silicate minerals!