DE LA RECHERCHE À L'INDUSTRIE

Passivation, phénomène clé gouvernant le comportement à long terme des verres nucléaires

S. Gin

CEA Marcoule, DTCD - Bagnols-sur-Ceze, France <u>stephane.gin@cea.fr</u>

www.cea.fr

GDR Verres Nice, France - 19 Novembre 2015

HLW & ILW

95% of all RN

- ~ 5000 m³
- ~ 40-60 y of interim storage prior to their final disposition

WHY GLASS AGING MUST BE STUDIED?

- Study the long-term behavior of existing glasses (→ safety assessment of the geological disposal)
- Support R7T7 vitrification operations
- Design new vitrification processes and new glasses for other types of wastes (including ILW)

Context

- Minor actinides and fission products arising from spent fuel reprocessing in France are confined in **borosilicate glasses**, made of >30 oxides
- Deep geological disposal—currently the most consensual solution for these wasteforms—requires a study of their longterm behavior to assess their environmental impact.

French high-level waste package and disposal cell ^[1]

Cea State of knowledge

- Glass canisters could last over 10⁶y if pH < 10, T < 90°C, high C(Si_{aq}) and low flow rate
- * But several phenomena could shorten this duration

DE LA RECHERCHE À L'INDUSTRIE

General needs

- ★ Better understand the mechanisms responsible for the residual rate
- * Assess the probablility and the consequences of a shift toward stage III
- ★ Better quantify the effects of NF materials and radioactivity

DE LA RECHERCHE À L'INDUSTRI

Relation between short-term & residual rate

- Measuring initial rates does not help understand what could happen at long term
- Same conclusion for PCT 7d

Evidences of interdiffusion far from saturation

DE LA RECHERCHE À L'INDUSTRI

Evidences of interdiffusion far from saturation

Fig. 4. Normalized dissolution rate of B. No, and Al as well as Si at 70° C as a function of reaction time and pH. International simple glass Microchannel flow through test @ 70°C

ISG glass composition (wt%)

SiO ₂	B ₂ 0 ₃	Na ₂ 0	Al ₂ O ₃	Ca0	ZrO ₂
56.2	17.3	12.2	6.1	5.0	3.3

-Si-O-M⁺ + H⁺ \rightarrow -Si-O⁻ + M⁺ + OH⁻ -Si-O-M⁺ + H₃O⁺ \rightarrow -Si-OH + M⁺ + H₂O

	E_a (kJ/mol)		
	Protonated	Neutral	Deprotonated
³ B(Q ¹)-O- ³ B(Q ³)	23	102	39
³ B(Q ²)-O- ³ B(Q ²)	18	129	145
3B(Q2)-O-3B(Q3)	53	98	115
3B(Q3)-O-4B(Q4)	60	113	-
3B(Q2)-O-Si(Q3)	60	106	108
3B(Q2)-O-Si(Q4)	80	102	120
4B(Q4)-O-Si(Q2)	72	151	1.00

★ Interdiffusion involves Alk, Alk earths and B

Inagaki et al., *Intern. J. Applied Glass Sci., 4* (2013) Geneste et al., J. Non-Cryst Solids (2006) Zapol, *Intern. J. Applied Glass Sci., 4* (2013)

| PAGE 8

Evidences of interdiffusion without water

⁷Li-doped SON68 glass in DMSO solution tagged with ⁶Li

$$D_{\text{interdiff}} = 2-4 \times 10^{-20} \text{ m}^2.\text{s}^{-1}$$

Neeway et al., J. Non-Cryst Solids 405 (2014)

Evidences of interdiffusion far from saturation

SON68 glass coupons altered @ 50°C and characterized by XRR

Water Diffusion coefficient in glass 1, 2 and SON68 at pH 3.2 and 5.7 at 50 °C

	pH/pD	3.2	5.7
120	Glass 1		$(1.5 \pm 0.2) \cdot 10^{-19} \mathrm{m^2 s^{-1}}$
31	Glass 2	$(9.8 \pm 0.5) \cdot 10^{-20} \text{ m}^2 \text{ s}^{-1}$	$(3.5 \pm 0.7) \cdot 10^{-20} \mathrm{m^2 s^{-1}}$
	SON68	$(5.1 \pm 0.4) \cdot 10^{-20} \text{ m}^2 \text{ s}^{-1}$	$(6.5 \pm 0.7) \cdot 10^{-21} \mathrm{m}^2 \mathrm{s}^{-1}$
O_2O	Glass 1		 A set of the set of
21-	SON68	$(1.5 \pm 0.4) \cdot 10^{-20} \text{ m}^2 \text{ s}^{-1}$	-

Fig. 11. Evolution of the electron density ρ_e of the altered glass for the SON68/6/XRR test.

- ★ Interdiffusion involve alkali, alkaline earths and B
- ★ It is favoured under acidic conditions
- For SON68 glass Dw is of the order of 10⁻²⁰ m²/s at 50°C and 10⁻¹⁹ m²/s at 90°C

Cea What happens 'close to equilibrium'?

3 processes causing the drop of the rate 1 : Effect of Si

Pre-sat solution makes the RD stage much shorter but does not impact the RR regime. The first hundreds of days are dominated by interdiffusion

DE LA RECHERCHE À L'INDUSTRIE

3 processes causing the drop of the rate 2 : formation of a PRI

2 OM < D_{interdiffusion} at the begining of the dissolution process

Effect of glass composition on the dissolution rate

Static test 90°C

Glass dissolution kinetics strongly depends glass composition (Frugier, JNM 2005)

Effect of COx GW on SON68 glass dissolution rate

 Mg-silicate precipitation sustains glass corrosion despite similar concentrations of Si

Jollivet et al., J. Nucl. Mater, 420 (2012)

cea

ea Current controversy

$\begin{array}{c} \stackrel{\text{Hydrolysis}}{\text{Condensation}} \text{Precipitation} \\ \text{Glass} \rightarrow \text{Hydrated Glass} \rightarrow \text{Gel} \rightarrow \text{Crystalline Phases} \end{array}$

Frugier et al., *J. Nucl. Mater.* (2008) Frugier et al., *J. Nucl. Mater.* (2009)

Dissolution Precipitation $Glass \rightarrow Gel + Crystalline Phases$

Geisler et al., *J. non-Cryst. Solids* 356 (2010) Hellmann et al., *Nat. Mater,* (2015)

Cea About the interfacial film of water

- Under silica saturation conditions it is impossible to separate the hydrated glass from the pristine glass (micro-scratch test). PhD Thesis of Diane Rebiscoul
- \Box There is a significant decrase of H in the interfacial zone (PRI)

Under silica saturated conditions, there is no isotopic evidence of interfacial precipitation of silica

New experiments

Gin et al., Nature Comm. 6 (2015)

□ International Simple Glass (ISG)

In 380 mL of solution initially saturated / (²⁹SiO₂)am at pH_{90°C} 7

 \Box S/V = 0.6 cm⁻¹

- Isotope sensitive analytical techniques: MC-ICP-MS and ToF-SIMS, NMR
- \Box Similar experiments run at pH_{90°C} 9 and 11.5
- □ For NMR studies, similar exp. with a 5µm glass powder

ISG glass composition (wt%)

SiO ₂	B ₂ 0 ₃	Na ₂ 0	Al ₂ O ₃	Ca0	ZrO ₂
56.2	17.3	12.2	6.1	5.0	3.3

Solution data

DE LA RECHERCHE À L'INDUSTRIE

Cea Solid analysis of the 209d sample

- B, Na, Ca are released congruently
- ★ H displays an opposite profile
- A tiny amount of ²⁹Si diffuses into the AL
- ★ No Si isotopes equilibration
- ToF SIMS profiles are confirmed by TEM

[²⁹Si/²⁸Si]_{so}l =32

How exogenous molecules diffuse through the AL?

- * Only small molecules can diffuse up to the corrosion front
- Pore size is < 1nm</p>
- ★ No free water molecules within the alteration layer

DE LA RECHERCHE À L'INDUSTRIE

Cea Why AL passivates glass?

- ★ B, Na, Ca are released congruently (despite their different structural role)
- ★ H displays an anticorrelated profile
- ★ Dw in the pristine glass (90°C and pH 7) ~ 6 10⁻¹⁹ m².s⁻¹ (from Rebiscoul work)

| PAGE 24

B profiles ISG Glass altered @ 90°C, pH 7 in SiO₂am sat solt

* Classical diffusion models fail to fit experimental profiles

Gin et al., Nature Com. 6 (2015)

* D drops by about 5 O.M. from the outermost AL to the reactive interface

- ***** *D* remains 5 to 9 O.M. lower than D_{He} in the pristine glass
- ★ Reactive transport at nanoscale must be better understood

DE LA RECHERCHE À L'INDUSTRI

Consequences of the pH rise?

ISG glass altered à 90°C in a SiO₂am sat solution Stage 1 : 209d @ pH 9 Stage 2 : pH raised to 11.5

Gin et al., Geochim. et Cosmochim. Acta (2015)

Morphological evolutions (pH_{90°C} 11.5)

Δt = 52 d E = 25-35 μm CSH, Zéolithes

DE LA RECHERCHE À L'INDUSTRI

ToF-SIMS elemental & isotopes mapping (pH_{90°C} 11.5)

Conclusion - Outlook

- At pH_{90°C} < 10: passivation (tied to nanoconfinement of water) is the main mechanism controlling the glass dissolution rate. The properties of nanoconfined water must be better understood.
- At pH_{90°C} > 10: the 'new' dissolution/precipitation paradigm proposed by Hellmann, Geisler, Puntnis is likely valid.

- Passivation means that water access to the pristine glass is hindered by the alteration layer
- Under Si sat solution the alteration layer forms by interdiffusion and self-reorganization of the hydrated silicate network
- The hydrated glass slowly transform into more stable amorphous and crystalline phases
- □ Water diffusion through the altered glass = solid state diffusion.
- The gradient area can be seen as a reaction front but there is no evidence of a film of water
- □ Controversy or not controversy?

Cea Initiatives at the international level

Workshops

Seattle (2009), Warrington (2010), Savannah (2011), Saint Louis (2012), San Diego (2013), Aachen (2014),

Miami (2015). Next: Madison (May 2016)

Publications

General paper published in Materials Today Special issue of IJAGS (by the end of 2013)

International Simple Glass (6 oxide borosilicate glass)

Synthesis (SRNL): 2012

Ongoing studies: SRNL, PNNL, ORNL,

Penn State Univ., Kyushu Univ., CEA, Subatech,

SCK, AMEC, Sheffield Univ., Cambridge Univ.

Several Bilateral collaborations

PNNL / CEA, PNNL/SCK, Kyushu Univ. / LBNL

Other

Visit of scientists, joint thesis, Coordinated Research Project

Acknowledgements

Jessica Vincent, Céline Marcou, Mylène Aragon, Jean-Pierre Mestre and Jean-Louis Chouchan, Pierre Frugier, Patrick Jollivet, Maxime Fournier, Nicole Godon...

Areva, Andra, EdF

THANK YOU!

Effects of Si on the glass dissolution rate

SON68 glass SPTF test with solutions spiked with Si, pH 8 $Q/S = 10^{-2} m/d$

★ Dissolved silica account for a rate drop of 2 O.M.

Jegou, PhD Thesis 1998 | PAGE 34

Solution chemistry and glass dissolution rate near equilibrium

SON68 glass Static tests @ 90°C, DIW, various S/V

DE LA RECHERCHE À L'INDUSTRIE

ToF-SIMS analysis of the Roland's sample (180d)

- □ 5 µm glass powder altered at pH 7 in Sisaturated solution until complete release of B, Na, Ca
- ²⁹Si NMR MAS and ¹H-²⁹Si CPMAS NMR analyses

- Partial repolymerization of the altered glass following the release of B, Na and Ca
- * The resulting material should be less soluble than the glass