

Phosphate glasses, (i) some aspects of their chemistry and related applications (ii) Nitrided phosphate glasses : another brick in the wall ?

(i) L. Montagne, F. Méar, L. Delevoye, University of Lille (ii) F. Munoz, CSIC Madrid

The starting point...

- P [Ne] 3s² 3p³ => sp³ hydridization
- P⁵⁺
- Tetrahedral P coordination => presence of π electrons on P-O bonds
- P=O d=0,145nm, P-O-P d=0,15 à 0,16 nm
- Some delocalization of π electrons, depending on the the number of POP

Consequence 1:

• silicates : Q⁰ to Q⁴, phosphates Q⁰ to only Q³

=> Phosphate glasses are often much less polymerized than silicate glasses

Consequence 2:

- Compare z/a² (valence/ionic radius):
 - P⁵⁺ : 2,16.10²⁰ m⁻²
 - Si⁴⁺: 1,54.10²⁰ m⁻²
 - B³⁺: 1,39.10²⁰ m⁻²
 - P₂O₅ is a strong Lux & Flood acid:
 - $P_2O_5 + O^{2-} \Leftrightarrow 2PO_3^{-1}$
 - => Strong reactivity with other oxides
 - FluoX pearls
 - Mixed-network glasses...

(Alumino-, Boro-, Vanado-, ...)

Phosphate laser glass

National Ignition Facility (US) Laser, Megajoule Laser (F)

Nd-doped Ba metaphosphate (Q² glasses)

- 3000 glass slabs :
 - Index uniformity to <±0.000001
 - Free of inclusions and bubbles larger than 100um
 - Residual hydroxyl content <100ppmw
 - Platinum particle free
 - Free of all detectable striae
 - Low 1054nm absorption of <.19% per cm thickness
 - ⇒ High Nd content without clustering effect

Beamlet eighteen liter rare earth doped phosphate glass amplifier slab

Glasses for nuclear waste immobilization : less polymerized network enables to incorporate large anions r

Q2 : Metaphosphate glasses for nuclear wastes with high sulfate content

CEA - CNRS GNR MATINEX (2010)

Q2+Q1: Silver tripolyphosphate glasses for radioactive I immobilization

CEA PhD T. Lemesle (2013) A. Chabauty (2018)

Zinc pyrophosphate glasses 66ZnO-33P₂O₅ (Q¹ network)

- Laser inscription, precipitation of silver nanoclusters.
- Why such network ? Low connectivity enables fast local reorganization ?

Other consequences of low network connectivity

- => Low Tg values
 - Typical values between 250 and 400°C
 - Tg values down to RT for fluorophosphate glasses !
- => Large coefficient of thermal expansion (10 to 25.10⁻⁶K⁻¹)
 - Applications for sealing to Al alloys in electronic packaging
- => Low chemical durability !

AI, Cu alloys, CTE#25.10⁻⁶ppm.K⁻¹

Sealing of BiMeVOx to Stainless steel (SOFC fuel cells) CTE#16-17.10⁻⁶ppm.K⁻¹ Bi₂O₃ highly reactive Formulation of Bi₂O₃-V₂O₅-P₂O₅ glass ¹⁰ Low chemical durability may be usefull? Phosphate glass fertilizers

• Slow release of oligo-elements (Mn, Cu)

Glass	Mol %							
code	P_2O_5	K_2O	CaO	MgO				
	Set B							
B-1	33.33	33.3	11.1	22.2				
B-2	36.84	31.6	21.1	10.5				
B-3	40.00	30.0	20.0	10.0				
B-4	42.86	28.6	19.0	9.5				

	CuO	MnO_2	MoO ₃	Fe ₂ O ₃	ZnO	CoO	S	B_2O_3
B-3M1	0.61	0.61	0.61	0.61	0.61	0	0	0
B-3M2	0.025	0.051	0.024	0.012	0.024	0.026	0.025	1.44

Ivandelko Völkenrode (2007)

Phosphate glasses as biomaterials

- Bone is made of apatite = calcium phosphate
- Hench's bioglasses : Ca, Na silicophosphates
- Vogel et al : Ca, Fe, Na phosphate glass-ceramics (machineable)
- Knowles : Na, Ca, Ti phosphate
- Good biocompatibility
- Control of dissolution rate is a key issue

Knowles Acta Biomaterialia (2012)

Calgonit Diamond[®] : slow release of zinc phosphate protects glasswares in dishwasher (pH buffering and surface adsorption)

Mixed-network phosphate glasses : aluminophosphates

Brow JNCS (1990)

Van Wullen ss-nmr (2007)

Characterization of aluminophosphate glass network: 2D NMR « toolbox »

Al(6) then Al(4) : why ?

0.25

Х

а

0/ P

Applications of aluminophosphate glasses Reticulation => enhanced chemical durability

- Antioxydation coatings for aerospatial composite ceramic materials
- Sealing Glasses

Mixed-network Phosphate glasses for nuclear waste vitrification

- Alternative solution to borosilicate glasses for special wastes
 - Higher waste loading
 - Larger solubility of chromium, molybdenum
 - Lower melting T : less volatilization of sulfur, iodine
- 70': USSR: Mamoshin, Stefanovski: aluminophosphate glasses
- 80': USA: Sales and Boatner : Pb-Fe phosphate glasses
- 90': USA: Day : Fe phosphate glasses

Vapor Hydration Test (VHT)

Transparent Niobiophosphate glass-ceramics

an

0.9

1.0

0.8

х

0.7

15

FIG. 2. TEM images of the GC with x = 0.9 (a), 0.8 (b), and 0.67 (c), and their particle-size distributions in the glass-ceramics. Red curves were fitting results by log-normal function. d_{mean} and d_{mode} correspond to mean and mode diameters, respectively.

Takahashi, Fujie, and Fujiwara Appl. Phys. Lett. 100, 201907 (2012) 21 Niobiophosphates glasses : Second harmonic generation for optical switchs

Mixed-network vanadophosphate glasses

Tg versus V_2O_5 content: what we expected...

 $\Rightarrow \% V_2O_5$ increases: P network $\rightarrow V$ network

 \Rightarrow V₂O₅ network is weaker than P₂O₅ one

 $Tg NaPO_3: 285^{\circ}C [1]$ Tg NaVO₃: 212^{C} [1]

Tg versus V_2O_5 content: what we obtained...

non linear evolution of Tg for the 2 series...

[5]: O. Lapina et al, Encyclopedia of NMR vol 8, 4892

Structural considerations explains evolution of properties

-first domains (Tg increases): reticulation with VO₆
-second domains (Tg decreases): evolution towards a vanadate network

 $xNaPO_3/(1-x)NaVO_3$

 $xNaPO_3/(1-x)V_2O_5$

Redox effect on Tg?

- Quantity of $V^{(+|V)}$ is small

- $V^{(+|V|)}$ may contribute to increase Tg at low V_2O_5 content

Other mixed-network phosphate glasses...

- Borophosphates
- Lead phosphates
- Tin phosphates
- Molybdophosphates
- Silicophosphates

Phosphate glasses: applications are related to network polymerization

GDR Verres GDR 3338

- -Water softening
- biomaterials
- sealing glasses
- Photonic glasses, laser glasses
 - Electrolyte glass

Sealing glasses

Water softening

- Anti-oxidation coatings
- Nuclear waste vitrification

Biomaterials

