

Photoinduced fluidity Mechanical behavior in Ge-Se and Te-As-Se glasses

J.-C. Sangleboeuf LARMAUR ERL CNRS 6274 University of Rennes 1, France

Viscoelastic model : Burger's cell

ensile test

Gaelle Delaizir¹, Jean-Christophe Sangleboeuf², Ellyn A King³, Yann Gueguen² Xiang-Hua Zhang⁴, Catherine Boussard-Pledel⁴, Bruno Bureau⁴ and Pierre Lucas³

Ge-Se: GeSe₉ - GeSe₄
fragile strong

Te-As-Se: Te₂As₃Se₅ (TAS)

Infrared spectroscopy for biology

	Tg (°C)	μ (GPa)
GeSe ₉	92	4.6
GeSe ₄	162	5.7

lone pair electron

chalcogen atom

gphotoexpansion

photoinduced
 refractive index
 change
 change

*s*photoamorphisation

photodarkening

*w*photopolymerization

photofluidity

mphoto-oxydation

*w*photobleaching

and the life

1 *

Common fluorescente light bulbs

Ge-Se: suband-gap light corresponds to low light intension low absorption, volumic effects

TAS: no suband-gap light, E>Eg, high absorption, effects limited to the surfa

Photoinduced decrease of the viscosity (in chalcogenide gla

Low absorption: few photons absorbed
 No temperature increase due to laser heating

TAS: no photoinduced effects even for high absorption

Ageing: evolution of mechanical/physical properties du structural relaxation

Evidence of photorelaxation at low light intensit

Relaxation-recovery tests

Servidence of photo ageing

A model for photofluidity

GeSe₉ fibers (∣300 µm)

Fast relaxation under irradiation

Relaxation time

~35 days under irradiation >10 years (estimated) in the dark

Ge₁₀Se₉₀ fibers, | 300 µm light 1 fibering 15 days 2 months 4 months 2dark

Ge₁₀Se₉₀ fibers, | 300 µm

shear relaxation tests

shear relaxation-recovery tests

Ge10Se90 fibers, aged 2 months under irradiation

Ge₁₀Se₉₀ fibers, aged 2 months under irradiation

Photofluidity due to ?

Collaboration: E. Lépine (Verres et Céramiques UMR CNRS 6226 SCR)

Ρ/

Localized state

Exciton creation: VAP Fritzsche's model

Philos. Mag. B, **1993**, 68, 561-572

Diffusion Conell's model

Physical Review B, 1981, 24, 4560-4565

Irradiation araptions of photoindupod mataatabl ndulaa

Photoinduced viscosity changes

Photoageing produced by photorelaxation

Photoexcitation disorder due to defects creations Photorelaxation defects mobility

Photoinduced defended mobility
 (photofluidity)
 should dominate at left

Photoinduced glass-forming

Photoageing: are other mechanical properties sensitive to light
 Can giant photoinduced effects be explained by photofluidity?

LARMAUR ERL CNRS 6274

QuickTime™ et un décompresseur sont requis pour visionner cette image.

vivre en intelligence

OuickTime™ et un décompresseur sont requis pour visionner cette image

ennes

Arizona Material Lab Tucson, Arizona

Glass and Ceramic Team University of Rennes UMR 6226