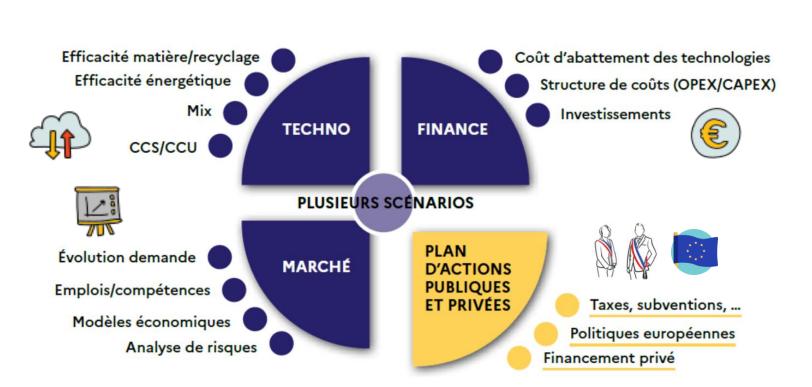
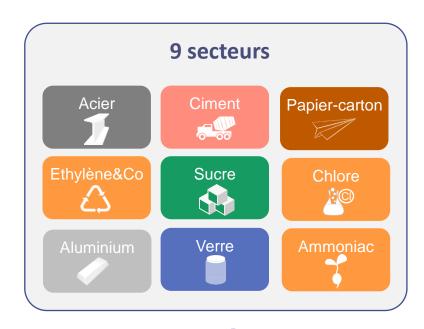


Fraternité

Plan de Transition Sectoriel de l'industrie du verre en France

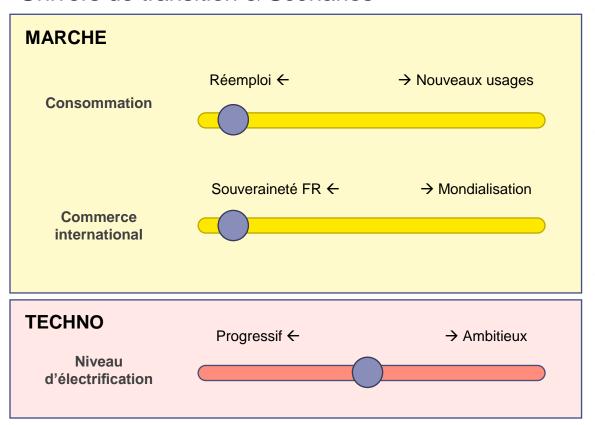
Colloque Fédération des Industries du Verre 2025





Un PTS, un exercice prospectif pour atteindre l'objectif de -81% d'émissions de GES d'ici à 2050 par rapport à 2015 imposé par la SNBC

~2/3 des émissions de l'industrie



Deux scénarios aux univers de transition différents

REEMPLOI, ECOCONCEPTION & RELOCALISATION (RER)

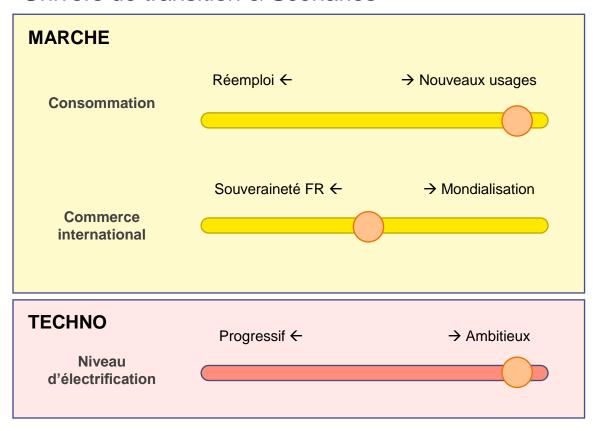
Univers de transition & Scénarios

REEMPLOI DIMINUTION DU POIDS DES PRODUITS

SOBRIÉTÉ BÂTIMENT NEUF ET TRANSPORT

TRANSITION DU SECTEUR DES **EMBALLAGES**

ELECTRIFICATION PROGRESSIVE SOUVERAINETÉ FORTE



Deux scénarios aux univers de transition différents

ELECTRIFICATION MASSIVE ET AUTRES DEFIS TECHNOLOGIQUES (EMDT)

Univers de transition & Scénarios

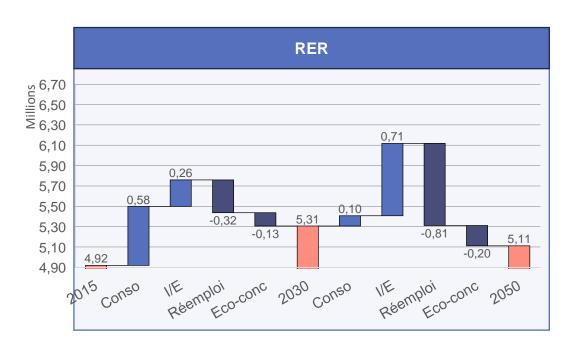
RENOUVELLEMENT DU PARC AUTOMOBILE ÉLECTRIQUE

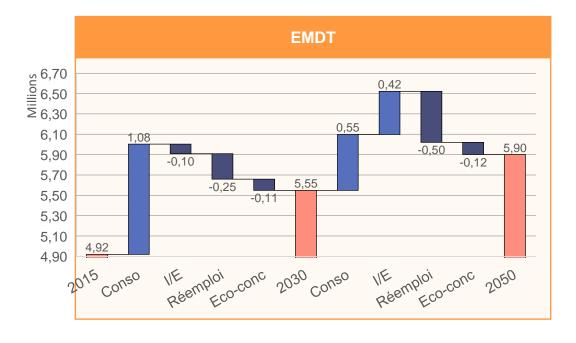
ELECTRIFICATION MASSIVE

HYDROGÈNE COMPLÉMENTAIRE

MATIÈRES PREMIÈRES DÉCARBONATÉES (CCS) & ALTERNATIVES

INTENSIFICATION DES ÉCHANGES EU ET HORS EU





Des niveaux de production stables ou en hausse

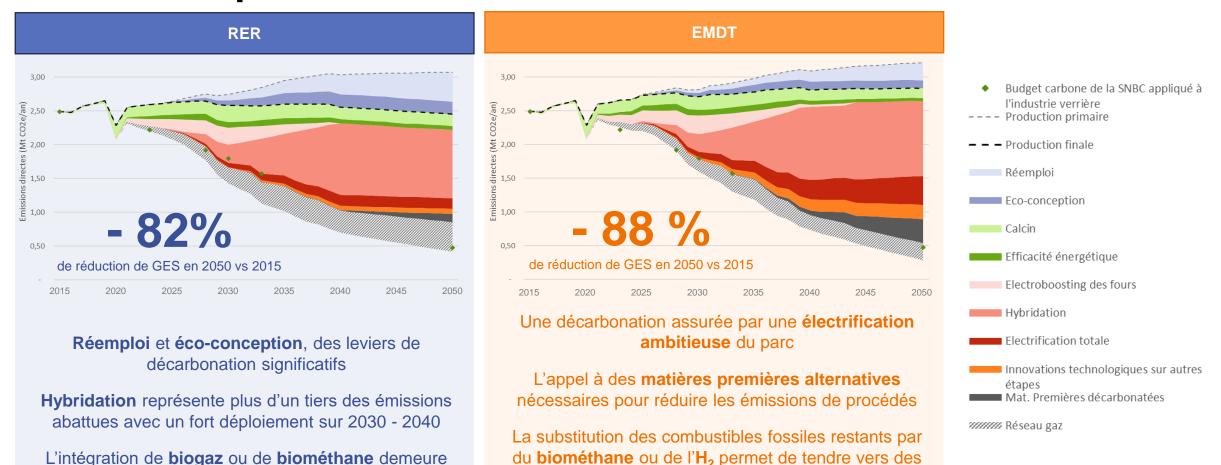
+ 4% de production en 2050 (+ 8% en 2030) vs

2015

Tonnes / an	2015	2030	2050
Verre plat	803 460	1 112 222	976 041
Emballages	3 388 679	3 400 528	3 237 112
Laine de verre	306 532	312 063	336 101
Arts de la table	279 932	318 600	349 654
Autres	141 500	162 931	212 708
Total	4 920 103	5 306 343	5 111 616

+ 20%
de production en 2050
(+ 13% en 2030) vs
2015

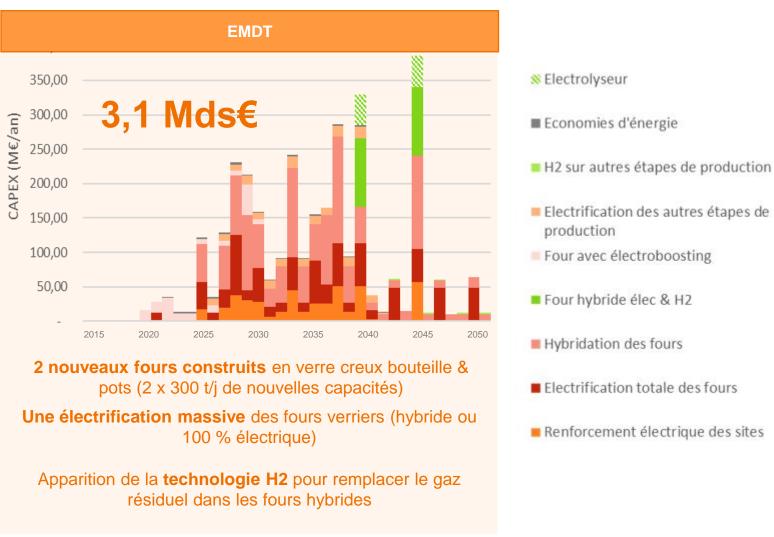
Tonnes / an	2015	2030	2050
Verre plat	803 460	1 200 395	1 135 876
Emballages	3 388 679	3 549 383	3 892 402
Laine de verre	306 532	344 786	379 750
Arts de la table	279 932	293 744	305 152
Autres	141 500	160 064	187 386
Total	4 920 103	5 548 373	5 900 566


Une décarbonation rapide et ambitieuse est

possible

objectifs de décarbonation optimums

un fort levier de décarbonation



Un cout d'investissement significatif

Des évolutions de marché très différentes selon les segments à anticiper

Un appui normatif, et règlementaire nécessaire pour développer le réemploi et l'éco-conception

L'incertitude sur le changement de mix énergie et matière est au cœur des enjeux d'évolutions technologiques

- L'accélération de la rénovation thermique des bâtiments devrait produire une forte demande sur la production de verre plat et de laine de verre
- La diminution de la production d'emballages à usage unique pourrait être **compensée** par des efforts de souveraineté et le déploiement de nouveaux marchés (en substitution aux plastiques)
- Une relocalisation de la production d'emballages et de laine de verre augmenterait la pression sur le gisement de calcin disponible
- Maximiser le taux de collecte et de recyclage des emballages (> 92 %) et du verre plat permettra des gains de compétitivité et de décarbonation directs
- Développer des filières locales (chaine de valeur intégrée de la production à la fin de vie) participera au renforcement des écosystèmes industriels

- Le réemploi et l'éco-conception sont deux voies d'optimisation de la consommation de ressources et d'énergie, faciles à mettre en œuvre industriellement, mais qui reposent sur les transitions des secteurs en aval :
- o Les filières et l'écosystème nécessaire au réemploi sont encore embryonnaires
- o Le secteur du bâtiment doit faire évoluer ses normes pour accepter des produits plus légers
- o Un autre enjeu majeur est celui de l'acceptation du consommateur (emballages éco-conçu)
- Soutien territorial et local afin de développer des filières de réemploi intégrées, à toutes les étapes de la chaine (producteurs, commerces, nettoyage, consommateurs)
- Animation de la filière verre plat afin de réunir tous les acteurs et faciliter l'acceptation d'une norme de verre plus léger

- L'électrification des procédés est déjà possible, mais est actuellement freiné par :
 - o La disponibilité et le calendrier de raccordement au réseau électrique : compétition d'accès à la ressource dans un contexte d'électrification globale de l'industrie et des autres secteurs & cout du raccordement hautetension significatif
 - o Le **prix** : manque de visibilité sur le surcout (OPEX) des technologies dans un contexte de forte variation du prix des énergies
- Besoin de **R&D** et d'innovation pour la substitution des matières premières carbonatées
- Besoin de visibilité sur l'intégration des sites dans le calendrier des raccordements au réseau électrique
- Besoin de visibilité sur les dispositifs de soutien à l'investissements dans la décarbonation (CAPEX & OPEX)
- Soutenir la recherche sur l'électrification des gros fours et les fondants décarbonatés