

PREDICTIVE ANALYTICS ENABLING FOR HIGH PERFORMANCE MATERIALS DESIGN

Case Study: Wind | USTV January 2024 Dr. Anne Berthereau

Stronger

WHO IS OWENS CORNING?

1938 First Board of Directors

1953 Chevrolet Corvette

 Conditioned Home you'll have the world's newest and finest

 Image: State S

1957 Recreational boating

1969 Space suits

1975 Trans-Alaska Pipeline

1980 The Pink Panther™

1981 Hajj airport terminal

2005 Wind H glass 2008 Bird stadium

n **2018** PAROC

OWENS CORNING AT A GLANCE OUR MISSION: TO BUILD A SUSTAINABLE FUTURE THROUGH MATERIAL INNOVATION

1. Owens Corning 2022 Sustainability Report, page 24

Note: Data as of 2022 Form 10-K; Consolidated figures eliminate intercompany net sales between reportable segments

Source: 2022 Form 10-K and Owens Corning management estimates; estimated error margin +/-5%

Please see Appendix C for the most comparable GAAP financial measure

GLASS FIBER MANUFACTURING

GLASS FABRIC TECHNOLOGIES

WHAT WE MAKE

Owens Corning products & applications

Fiberglas™ Rebar Bridge construction, marine structures, tunnel boring/soft eye, rail, electrical isolation, historical preservation, architectural, balconies

WearDeck[™] Decking Commercial decking application and structural lumber for use in construction applications

Ultraspar[™] Pultrusions

High performance pultrusions for the wind energy market to enable longer blades

Knitted or woven fabrics Wind, pipe, thermoplastic composites, industrial,

recreational

Nonwoven veil Construction, industrial, automotive, road paving

Chopped strand mat and continuous filament mat Marine, transportation, recreation, corrosion resistance.

Continuous Fiber Type 30[®] single end roving

Chemical and sewage, oil, water processing (pipe and tanks), industrial (high-pressure vessels, pultruded items), wind energy, aerospace, ballistics, transportation (muffler filling), electrical (optical cable)

Continuous fiber multi-end roving

Construction (panels and translucent panels), corrosion resistant pipe and tanks, consumer (sanitary, recreational vehicles), transportation (headliner, body parts, semi-structural parts)

Chopped strand, wet-use Building products (roofing and gypsum), industrial specialties

HOW DO WE INNOVATE?

OUR PRODUCTS* MAKE WIND ENERGY MORE COST EFFECTIVE

BLADE TECHNOLOGY IS KEY IN DRIVING LCOE DOWN

LCOE: Levelized Cost Of Energy (measures Lifetime cost divided by energy production)

LONGER BLADES DESIGN REQUIRES:

- High glass modulus (Gpa > 90)
- Fatigue

MATERIALS PROPERTIES

ENABLER FATIGUE => SIZE CHEMISTRY => INTERFACE VISCO ELASTIC PROPERTIES

Challenge: test one size and related fatigue take 6 weeks

INTERFACE LAMINATES

GOOD ADHESION

POOR ADHESION (DRY FIBER, UNCOVERED)

ASSUMPTIONS

Composites visco elastic properties are influenced by interphase viscoelastic properties & the adhesion quality between glass surface & resin.

OPPORTUNITIES

(1) Measurements

Fast & reliable measurements of interface properties (DMA)

(2) Prediction

(3) Correlation interface properties with laminates fatigue performances

DMA parameters considered

- E" Loss modulus
- E' Storage modulus
- Tan $\delta = (E''/E')$
- Temperature location of the Tan δ peak
- = (Tg of the composite material).
- Amplitude of the Tan δ peak

Typical DMA curve obtained for a viscoelastic material (polymers and polymer networks) where a secondary transition T β is observable (-21°C) on top of the primary transition T α (146°C).

LITERATURE - Interface visco elastic properties measured by DMA

- Mäder & al: impact of glass fiber size on viscoelastic properties of epoxy UD
- Liao & al: established a correlation between static mechanical properties and $\mathsf{Tan}\delta$

Figure 4-1: Impact of the silane type on the tan δ peak (position amplitude and shape).

Figure 4-2: Correlation attempt between the viscoelastic properties and static mechanical properties of a composite.

Mäder & al « Static and Dynamic properties of single and multi-fiber epoxy composites modified by sizings », Composites Science and Tcehnology 67 (2007) 1105-1115 Liao & al « Mechanical performances of glass woven fabrics composites: effect of different surface treatments agents « Composites: Part B 86 (2016) 17-26

(2) Owens Corning Linear & Quadratic Regression Models

Linear regression

$$Y_{i} = \beta_{0} + \beta_{1}X_{1,i} + \beta_{2}X_{2,i} + \beta_{3}X_{3,i} + \beta_{4}X_{4,i} + \varepsilon_{i}$$

mouel	<u>^</u>	N Square Aujust	eu A S		or or the E	sundle
1	.848(a)	.719		.607	3	3.535959
a. Predicto peak	ors: (Constant), Î″T at h/2, E Glassy (T	=), FWF	(Panel average), /	Amplitude	Tanî′
ANOVA(a)						
Model		Sum of Squares	df	Mean Square	F	Sia
Model		Sum of Squares	df	Mean Square	F	Sig.
Model	Regression	Sum of Squares 28827.513	df 4	Mean Square 7206.878	F 6.401	Sig. .008(b)
Model 1	Regression Residual	Sum of Squares 28827.513 11246.605	df 4 10	Mean Square 7206.878 1124.661	F 6.401	Sig. .008(b)
Model 1	Regression Residual Total	Sum of Squares 28827.513 11246.605 40074.118	df 4 10 14	Mean Square 7206.878 1124.661	F 6.401	Sig. .008(b)
Model 1 a. Depend	Regression Residual Total tent Variable:	Sum of Squares 28827.513 11246.605 40074.118 Result	df 4 10 14	Mean Square 7206.878 1124.661	F 6.40	Sig. .008(b)

Quadratic regression

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \beta_3 X_{3,i} + \beta_4 X_{4,i} + \beta_{33} X_{3,i}^2 + \beta_{44} X_{4,i}^2 + \varepsilon_i$$

Model Summary

Model	R	R Square	Adjusted R Squa	TP		Std. Error of the Estimate
1	.942(a)	.887		.803		23.739635
a. Predictors: (Constant), Î"T at h/2_SQ, E Glassy (T=), FWF (Panel average), Amplitude Tanl' peak_SQ, Amplitude Tanl' peak, Î"T at h/2						

ANOVA(a)

Model		Sum of Squares	df	Mean Square	F	Sia.
	Regression	35565.556	6	5927.593	10.518	.002(b)
1	Residual	4508.562	8	563.570		
	Total	40074.118	14			
a. Dependent Variable: Result						
b. Predictors: (Constant), Î"T at h/2_SQ, E Glassy (T=), FWF (Panel average), Amplitude Tanδ peak_SQ, Amplitude Tanδ peak, Î"T at h/2						

Yi : average fatigue for size i 4 independent variables

VARIABLES (IF QUESTIONS)

$Y_{i} = \beta_{0} + \beta_{1}X_{1,i} + \beta_{2}X_{2,i} + \beta_{3}X_{3,i} + \beta_{4}X_{4,i} + \varepsilon_{i}$

·		
Coefficient	Variable	Description
	Y_i	Average test result of the Endurance property, Fatigue,
		for sizing i
β_0		Intercept for the model
β_1	X _{1,i}	Panel average fiber weight fraction (FWF%) for the test
		panel for sizing i
β_2	X _{2,i}	Average test result of the E Glassy (T=) for sizing i
β_3	X _{3,i}	Average test result of the Amplitude of the Tan δ Peak for
		sizing i
β_4	$X_{4,i}$	Average test result of ΔT at Half Height of the peak for
		sizing i
	ε _i	Error for the regression equation for sizing i
	i	B2, , F

 Table 8-3:
 Linear Regression Equation Results

$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \beta_3 X_{3,i} + \beta_4 X_{4,i} + \beta_{33} X_{3,i}^2 + \beta_{44} X_{4,i}^2 + \varepsilon_i$

Coefficient	Variable	Description
	Y_i	Average test result of the Endurance property, Fatigue,
		for sizing i
β_0		Intercept for the model
β_1	X _{1,i}	Panel average fiber weight fraction (FWF%) for the test
		panel for sizing i
β_2	X _{2,i}	Average test result of the E Glassy (T=) for sizing i
β_3	X _{3.i}	Average test result of the Amplitude of the Tan δ Peak for
		sizing i
β_4	$X_{4,i}$	Average test result of ΔT at Half Height of the peak for
		sizing i
β_{33}	$X_{3,i}^2$	Average test result of the squared Amplitude of the Tan δ
	-,-	Peak for sizing i
β_{44}	$X_{4,i}^2$	Average test result of the squared ΔT at Half Height of
	-,-	the peak for sizing i
	ε_i	Error for the regression equation for sizing i
	i	B2, , F

 Table 8-6:
 Quadratic Regression Equation Results

MODEL IMPROVMENTS FROM LINEAR TO QUADRATIC & ADV QUADRATIC

Quadratic model with one interaction (FWF*E) displays an very high R-squared 0,867

CONCLUSION

- Possible to correlate interface viscoelastic properties with fatigue composites performances
- **Measurements:** DMA + fatigue (ISO 13003:2003)
- **Optimal model:** quadratic with interaction
- Benefit: faster development time

Linked in | ANNE BERTHEREAU