

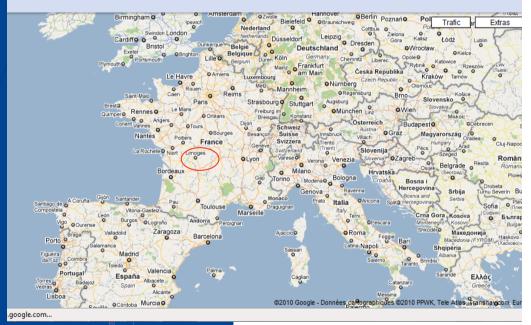
Rennes, 9 décembre 2011

Préparation de fibres optiques par technologie poudre

J.L.AUGUSTE, G.HUMBERT, A.PASSELERGUE, S.LEPARMENTIER, G.DELAIZIR*, J.M.BLONDY

Xlim (Limoges)
GEMH (Limoges)

auguste@xlim.fr



Qui est Xlim?

XIm: Unité Mixte de Recherche UMR 6172 Institut Carnot (2008-2011) LABex (depuis 2011)

470 personnes (Permanents et étudiants)

6 départements de recherche

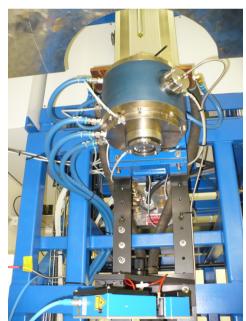
(Electronique (2), Electromagnétisme, Traitement de l'Image, Informatique/ Mathématique et Photonique.

Département Photonique : 2 groupes :

Groupe Fibre Groupe Optique CNL

Une plateforme Technologique: PLATINOM.

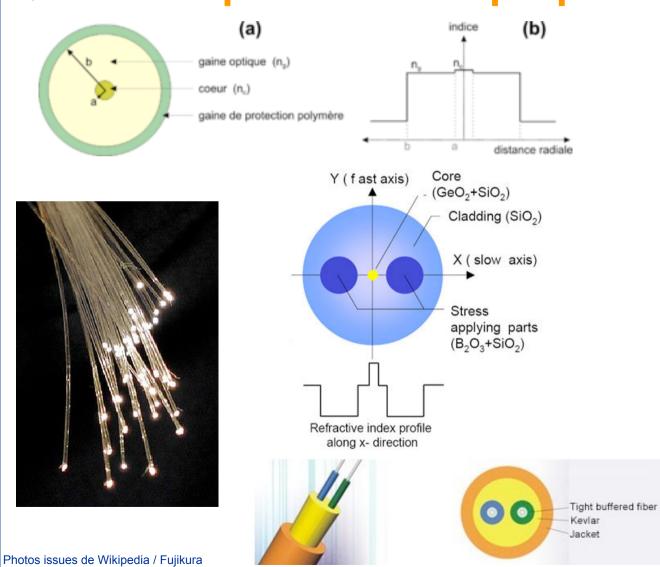
L'ensemble des équipements pour la réalisation de fibres hors norme + GIS Grifon (Lille, Nice, Rennes, Lyon).



Equipements de fibrage

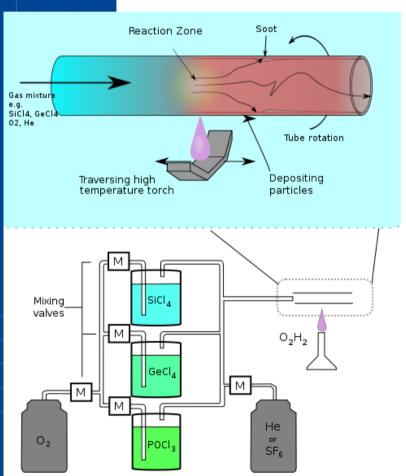
- •Deux tours de fibrage
 - Recherche
 - Développement
 Tour équipée double face,
 capillaires et fibres

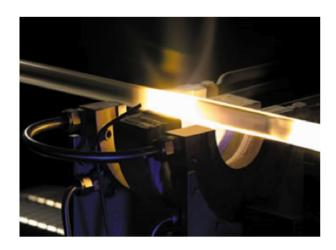
Plateforme ouverte : industriels, académiques ...



Sommaire de la présentation

- •Qu'est ce qu'une fibre optique ?
- •Procédés 'classiques' de fabrication des fibres optiques
- La 'mise à jour' de techniques anciennes (!)
- Mise en place du Procédé Poudre à Xlim
- •Résultats Technologiques et Scientifiques
- Les domaines d'applications visés et les projets associés
- •La suite ?


Qu'est ce qu'une fibre optique?



•Technique MCVD (années 70)

Les pertes optiques!

Année	Pertes (dB/km)	Longueur d'onde (nm)	Entreprise
1970	20		Corning Glass Work
1974	2-3	1 060	ATT, Bell Labs
1976	0,47	1 200	NTT, Fujikura
1979	0,20	1 550	NTT
1986	0,154	1 550	Sumitomo
2002	0,1484	1 570	Sumitomo

Photos issues de Wikipedia

•Technique Stack and Draw (années 70)

Ancien procédé mis en œuvre pour la réalisation de fibres multicoeurs

All-silica single-mode optical fiber with

photonic crystal cladding

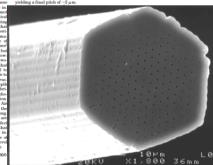


Fig. 5.8. Photomicrograph of a 25-µ-diam multiple fiber consisting of 150 circular

Fig. 5.7. Method of drawing multiple fibers: (a) assembly of rods and tubes prior t drawing; and (b) cross section of a multiple fiber drawn from such assemblies

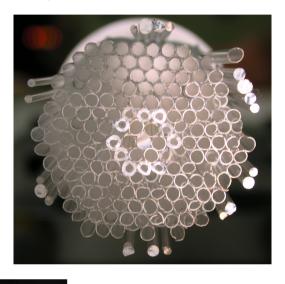
> ... et remise au goût du jour en 1996 Par l'Université de Bath avec l'idée (géniale) d'utiliser des capillaires et s'affranchir de la chimie.

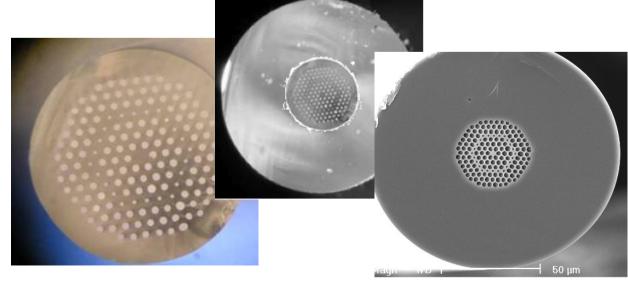
•Technique Stack and Draw (fin des années 90)

1 : Tube de silice

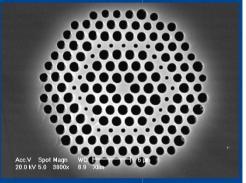
2 : Capillaires

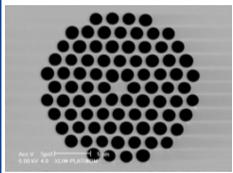
3 : Préforme primaire

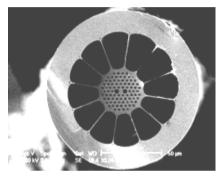

4 : Canne structurée

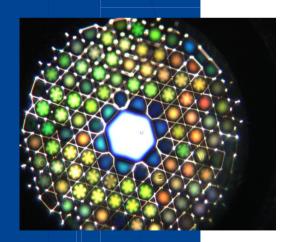

5 : Préforme secondaire

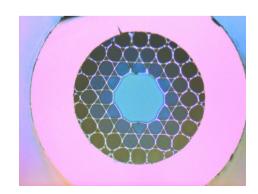
6 : Fibre optique

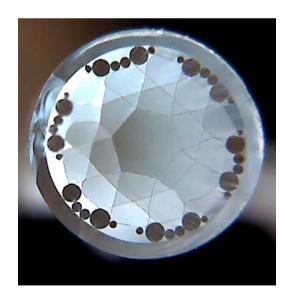












•Etat de l'art à la fin 2005

•Depuis ...

La mise à jour de techniques anciennes

- •Les PCF ont permis de s'affranchir du dopage chimique (uniquement Silice et Air):
 - Travail important fait sur le géométrie du guide
 - Ouverture de la bande spectrale, les fibres ne sont plus 'uniquement' faites pour les Télécom

. . .

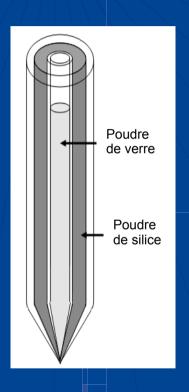
- En conséquence les pertes ne sont plus le seul paramètre pertinent de la fibre
- •Questions :

Peut on travailler sur le matériau autre que la silice pure ?

Quelle 'nouvelle' technique serait pertinente pour cette mise en œuvre ?

The Powder in Tube Technique

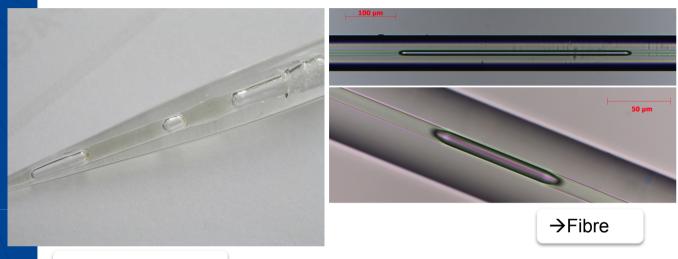
Poudre SiO₂


1973	L.G.Van Uitert and Al. Bell Laboratories OFT IEEE	Coeur en silice pure et gaine en SiO ₂ + B ₂ O ₃
1995	Ballato and Al. APPLIED OPTICS, Vol. 34, No. 30	Powder in tube technique afin de réaliser le coeur de la fibre
2005	C. Pedrido, Brevet WO102947, 2005. Silitec Fibers SA Patent	Préforme MCVD insérée dans un tube rempli de sable de silice. Adaptation aux PCF : Collaboration

→ Convention de collaboration avec la société SILITEC FIBRE SA -> Accord cadre en cours de signature

→ Application aux PCF – travail en collaboration

L'ensemble de la gaine et réalisée à partir de sable de silice


Mise en place du Procédé Poudre à Xlim

Modification du procédé : possibilité de réaliser simultanément le cœur et la gaine par voie poudre

- → Large choix de verres car principalement disponible sous forme de poudre (notion de fibrable 'disparait')
- → Plusieurs verres de nature différente peuvent être utilisés
- → Possibilité de réaliser des **structures non symétriques**
- → Limitation du coût : seule la partie noble est en verre
- → Procédé 'simple'
 - → Coefficients de dilatation différents : à prendre en compte lors de la fabrication
 - → Diffusion à l'interface cœur gaine possible
 - → Nécessité de maîtriser le process de fabrication : microbulles et autres défauts structurels

Mise en place du Procédé Poudre à Xlim

→ Préforme

- → Phase de consolidification
- → Tirage sous dépression
- →...
- →Objectif est d'obtenir plusieurs dizaines à centaines de mètres sans défaut structurel
- →Objet de la thèse de S.Leparmentier (2008-2010)

Verre étudié SiO₂-Al₂O₃-La₂O₃ (SAL) - IPHT

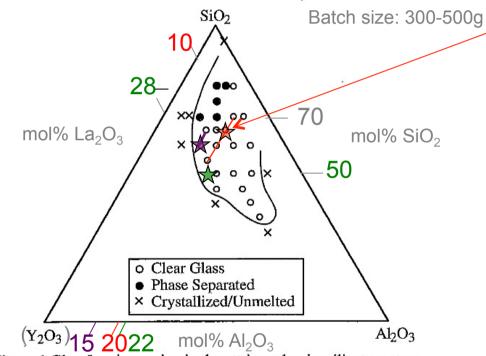
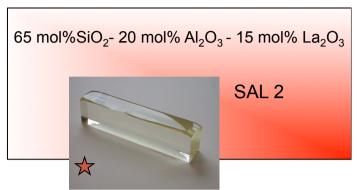



Figure 1 Glassforming region in the yttrium aluminosilicate system.

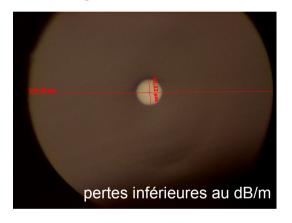
La₂O₃ for high refractive index in glass Al₂O₃ increase the solubility of La in silicate matrix

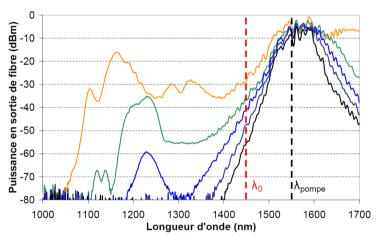
Feasibility of transparent SALglass with La₂O₃-content 15 mol %

 T_g 861°C / T_{soft} 922°C α @ 600°C (5,3 \cdot 10 $^{\text{-6}}$ K $^{\text{-1}}$) n 1.65 (1300nm) Transmission range: 250 - 2700 nm

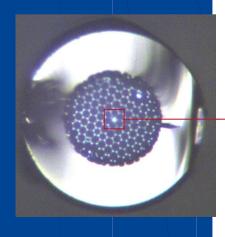
Preparation of structured fibers with SAL-core (15 mol% La₂O₃) no crystallisation

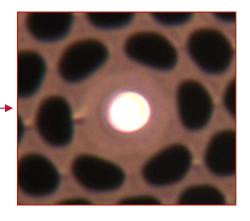
Attenuation structured fibers: 0,5-1,1 dB/m (1300nm)


Résultats Technologiques et Scientifiques


Synthèse de verre : IPHT

Fabrication fibre voie poudre: Xlim


Collaboration IPHT Jena – Projet NEODIN / VORTEX


Verres oxydes de métaux lourds

microchip Nd:YAG laser @ 1064 nm longueur d'impulsion = 600 ps Puissance moyenne 30 mW Puissance crête = 7 kW

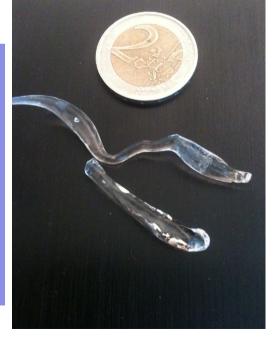
Objectif: Gestion de la dispersion autour de 1.55µm et 1.064µm Application à la réalisation de sources optiques

Synthèse de verre @ Xlim

depuis octobre 2011

Equipements et savoir-faire via VORTEX

Synthèse de verre @ Xlim



depuis octobre 2011

Verres obtenus Par melt quenching

Réduction sous forme de poudre

Première réalisation :

Verre SAL identique à celui de l'IPHT : étalonnage

Développement d'autres verres en cours et en collaboration (GEMH G.Delaizir, IPGP D.R.Neuville ...

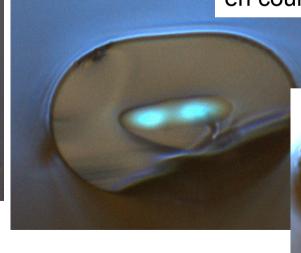
cuivre)

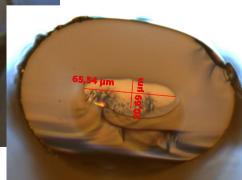
% masse

(0.5)

Preforme

Synthèse de verre @ Xlim

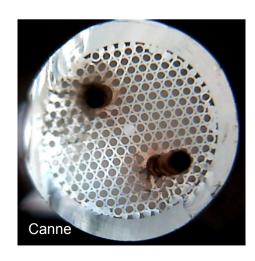

IPHT, IAP Berne, Xlim

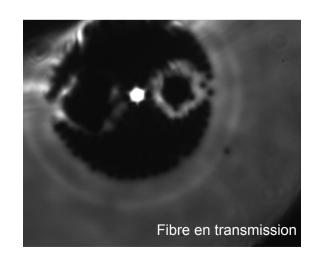

Exemple de 'gouttes'

Excitation en lumière blanche

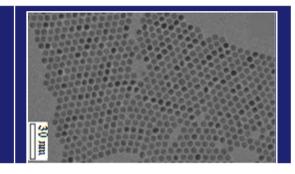
Premières fibres optiques nov 2011 ... non circulaires Etat d'oxydation des nanoparticules de cuivre en cours d'étude

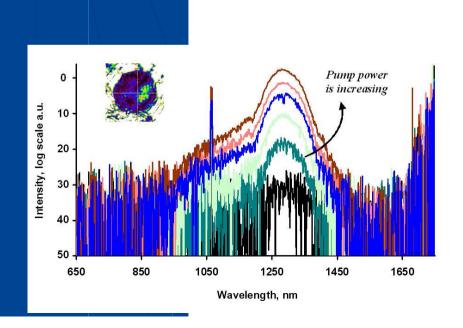

Résultats Technologiques et Scientifiques


France Paratonnerre


Poudre métallique

Réalisation de fibres de silice incluant des fils métalliques





Résultats Technologiques et Scientifiques

Procédé Poudre combiné à la voie liquide

Fonctionnalisation du verre : Dopage de grains de silice à l'aide de Quantum Dots (PbSe)

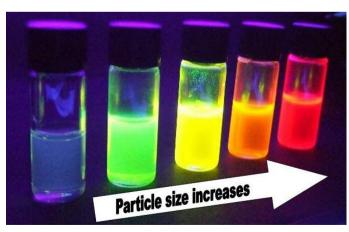


Photo luminescence de Quantum Dots CdSe/ZnS dispersé dans du toluène (excitation UV).

Les domaines d'applications et Projets associés

Deux grands domaines d'applications sont visés :

Les **sources optiques** exploitant les effets non-linéaire du matériau vitreux et/ou des particules présentes à l'intérieur

Les **capteurs à fibres optiques** par l'utilisation de la matrice vitreuse comme matériau sensible à son environnement, ou par le comportement de particules présentent dans cette matrice

Collaborations:

L'équipe (France) engagée

Stéphanie Leparmentier – CDD ingénieur (Xlim Limoges)

Gaelle Delaizir - Maître de conférences (GEMH Limoges)

Armand Passelergue - Technicien (Xlim Limoges)

Georges Humbert – Chercheur (Xlim Limoges)

Jean-Marc Blondy – Ingénieur, responsable Groupe FIBRE

(Xlim Limoges)

Jean-Louis Auguste – Ingénieur, responsable plateforme

FIBRE (Xlim Limoges)

Thèse financée pour sept. 2012

Contact : auguste@xlim.fr