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Interfaces

Macroscopic scale: an interface appears as a sharp
dividing surface



Scales and descriptions

Microscopic scale: matter consists of atoms,
which can exhibit spatial order (or not)
(Molecular dynamics simulation, B. Laird)



Diffuse-interface picture

Mesoscopic scale: the interface can be described
by a continuum theory, but has an internal structure
and a finite width (picture: R. Folch)



Bottom-up approach:

Statistical physics

Scales and descriptions

Macroscopic view:
Domains are separated
by sharp boundaries
Free-boundary problems

Mesoscopic View:
Fields are continuous but exhibit
Interfaces with internal structure
Phase-field models

Microscopic view:
Matter consists of atoms
Each atom is considered individually
Atomistic methods
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Bottom-up approach:

physics of

phase transitions

» J. S. Langer, « An introduction to the kinetics of first-order

phase transitions », in So
university press

* M. Plapp, « Phase-fielc
The diffuse interface met

lids far from equilibrium, Cambridge

models », In Multiphase microfluidics:
nod, CISM lectures 538, Springer 2012

* M. Plapp, « Phase-fielo
Growth, Elsevier (2015)

models », in Handbook of Crystal



|_attice alloy model

* Toy model for solid solutions
» Each lattice site can be
occupied by an A atom (black)
or a B atom (white)

» Atoms 1nteract with their
nearest neighbors

 Can be easily generalized to
more species or longer range
Interactions

ALA B..B A..B B.A
VAN n: + VN, n. +VAB(ni n; +n;/n; )



Free energy

By a simple mean-field approximation, we obtain

E v c(1—c)+kgT[clogc+(1-c)log(1—c)]
\7=VAA+VBB_2VAB C=%

Above the critical temperature: single well
Below the critical temperature: double well — phase separation



Inhomogeneous systems

e The concentration
depends on space

» |dea: coarse-graining

* Need to take Into
account interactions
between neighboring
cells

Il Attention !! Supposes that there is a scale hierarchy:

Lattice spacing << { << scales of interest



Free-energy functional

In the continuum limit: Ginzburg-Landau free energy
functional

K ~
F=J/ —(Vef +f()[dv  KecV

The square gradient coefficient is proportional to the
Interaction strength



Dynamics

Conserved dynamics: @ =-V-J
ot
J = —MVH L= Z—F . diffusion potential
C

% =V [MV(- kv + ()

Cahn-Hilliard equation or model B



Order parameter for the solid-liquid
transition

J VU

¢: order parameter or indicator function

An order parameter ¢
can be defined in several ways:

- Bond-angle order parameter (MD)
- Envelope of density oscillations

The latter can be calculated quite
rigorously from DFT if the interface
width is large compared to the
lattice constant



Top-down approach:
matched asymptotics



Phase-field models : basic idea

Explicit
tracking of Interfaces
5 O Boundary conditions

Implicit
description of interfaces
+

Evolution equation




Free energy functional

F=[ K(V4) +Hf,,(¢)
For example : fOIW (9) = —(I) |2 + ¢4 [ 4

General scaling relations :

H : energy/volume
K : energy/length

W ~ JK/H q)ﬁ
~ JKH = HW \




Coupling to temperature

Free energy density : f(T, ¢) _ f(Tm | ¢)+ 5f( ,¢)
oT |
of (T, ¢) — T=T
oT | ) T>T
T<T
S(¢)= Ss 1+g(¢)+5|_ 1_2(4))
g : tilting function
Must satisfy (i 1)




Evolution equations

de=Tds =T Z a7+ do
oT 0o

0= V(K'\VT)
cD

= 8,T=V(DVT)+ 2_Lc g'(6)0,0



Principle of matched asymptotic

liquid

solid

expansions

Y

|

W

|

outer region

Inner region

W << R

W<<D/v,

* Inner region (scale W): calculation with constant x and v,
e outer region (macroscale): simple solution because ¢ constant

» matching of the two solutions close to the interface



Example in 3D: A dendrite

Anisotropy:
W — W(AH)

T — 1(A)

A_ Vo
L

Can be generalized to alloys in two ways:
two-phase approach (Kim-Kim-Suzuki 1999) or
grand-canonical formulation (Plapp 2011)



Coupling to CALPHAD



Cahn-Hilhiard formulation

Suppose that CALPHAD gives us a free energy f(c):

F = j g(v(;)uf(c) dv

Two-phase equilibrium is given by the common tangent:

_ofp _of
“ocl. ac

Cy Co

l’leq

: f(c,)-T(c,)= ueq(cl _Cz)




Interface structure

The Interface profile is determined by the equation
1 2
~K(@,0F =5(k)

f
/ Surface energy:

y=[K(8,c)dx

C

Consequence: the surface energy and the interface thickness
are determined by K and f(c).



More flexibility ?

Possibility 1: introduce scaling coefficient for f(c)
(Ph.D. thesis of C. Cardon; Cardon, Le Tellier, Plapp 2016)

-

V

= v o« VKA W oc VK /A

K

3 (V) + Af(c)

dVv

Possibility 2: describe each phase by a separate free energy
function and use a phase-field description (as of yet

unexplored)



Multi-component systems



Simplest case: ternary

Two independent composition variables c,, Cg

1
F=j > =K,Vc, Ve +f(c,.cq) |dV
V

| i,j=AB

The coefficients Kj; form a symmetric 2x2 matrix

The interface profile is determined by two coupled
equations

Problem: the surface energy is a function of K, ,, Kxg,
and Kgg: the K matrix remains undetermined



Interface adsorption

Visualization of interface « trajectory » in the Gibbs simplex:

Phase 1

—

The Interface structure
and the total interface
adsorption depend on the
choice of the K matrix !



Solutions ?

Develop a CALPHAD description for the gradient energy
coefficients that Is consistent with the bulk description

Use a phase-field description: separate bulk free energies for
the two phases and a single phase field for the interface



Dynamics

Conserved dynamics: % =-V.J.
ot |

oF
Ji=—) M:Vu: u, =

. ZJ: Vi =5

Problem: mobility matrix Mij is needed. Can be
related to diffusion matrix, but very little information
Is available.



Conclusions

Diffuse-interface methods are a useful tool for the modeling of
Interface dynamics

They are based on non-equilibrium thermodynamics

More work Is needed to establish a solid relation to
CALPHAD free energies in multi-component systems



