DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Processus de démixtion dans les verres

Ecole GDR Verre «Du verre au cristal : nucléation, croissance et démixtion, de la recherche aux applications» Oléron du 12 mai au 17 mai 2013

Sophie SCHULLER

ULLER CEA, DTCD, SECM - Marcoule F-30207 Bagnols-Sur-Cèze, France

CEA | Sophie Schuller – 13 mai 2013 | PAGE 1

1. Qu'est ce que la démixtion dans un verre ? : quelques illustrations

Plan

- 2. <u>Description des domaines d'immiscibilité dans les verres</u>
 - I. Notion de solubilité et d'immiscibilité des solutions idéales et réelles
 - II. Représentation des lacunes de miscibilité dans les systèmes binaires et ternaires
 - III. Mode de démixtion
 - IV. Détermination de la température de démixtion
 - V. Démixtion secondaire
 - VI. Démixtion stable et métastable
- 3. Cinétique de la démixtion
 - I. Influence du mode de diffusion
 - II. Décomposition spinodale- Approche de Cahn et Hilliard
- 4. <u>Exemple de démixtion</u>
 - I. Démixtion stable
 - II. Démixtion stable qui se prolonge dans le domaine métastable
- 5. <u>Caractérisation de la démixtion : Etude d'un verre complexe</u>

HV

30.00 k\

mag

400 x

2/14/2011

9:51:05 AM 21.4 mm

WD

Evolution en température d'un verre contenant 1 % mol. (2,3% mass.) MoO₃ Vidéo acquise en Microscopie Electronique Environnemental in-situ en température (Johann Ravaux, ICSM)

Video

temp

702 °C

100 um

SBN-M1

Démixtion obtenue par décomposition spinodale Résultats de simulation Cahn-Hilliard / Navier-Stokes (Alain Cartalade / CEA Saclay)

Ecole Oléron 12 au 17 mai 2013 - Démixtion dans les verres - CEA | Sophie Schuller

2- Description des domaines d'immiscibilité dans les verres

2-(I) Notion de solubilité et d'immiscibilité des solutions idéales et réelles

Cas des solutions idéales

La solubilité : Concentration maximum d'un composant (un soluté A) pouvant être accommodé dans une phase (un solvant B) dans des conditions déterminées de température, de pression composition chimique. et de Deux 0 liquides sont dits miscibles en toutes proportions à température une déterminée (T) lorsqu'ils se mélangent totalement l'un dans l'autre (système eauvinaigre)

ΔG

Solution idéale : $(\Delta V_{m,} \Delta H_{m} = 0)$

 $\Delta \mathbf{G} m = \Delta \mathbf{\Pi} m - \mathbf{I} \Delta \mathbf{S} n$

 ΔS_m , ΔG_m au cours de la formation de la solution dépendent uniquement des concentrations des constituants

$$\Delta S_m = R [X_A \ln X_A + X_B \ln X_B]$$

La miscibilité dans les verres ou plus généralement dans des solutions quelconques n'obéit pas à la règle des corps purs.

Ecart à l'idéalité → Cas des solutions régulières

Solutions régulière ou réelle : (ΔVm , $\Delta Hm \neq 0$)

Le volume et l'enthalpie résultant de la dissolution des composants s'écartent de la somme des composants constitutifs A et B du mélange

Solution strictement régulière (symétrie en X)

 $\Delta H_m = -\Lambda X_A X_B$

Solution réelle plus complexe

$$\Delta H_m = -\Lambda X_A X_B (1 + a X_A + b X_A^2 + \dots)$$

 Λ : Paramètre caractéristique de la force d'interaction, entre les atomes A et B permet d'indiquer l'écart à l'idéalité

$$\Lambda = -ZN_A[E_{AB} - 1/2(E_{AA} + E_{BB})]$$

Variation de ΔG_m en fonction de la variation de l'entropie

 $\Delta H_m >> 0$

Lorsque l'enthalpie est plus élevée ($\Delta H_m >>0$), elle conduit à une grande instabilité du mélange mécanique dépendante de la variation d'entropie du système

- (a), (b) : Températures basses → Entropie est minimum
- (c) : température élevée \rightarrow Entropie maximale

2-(II) Représentation des lacunes de miscibilité dans un système binaire

Courbe de coexistence (binode ou solvus)

Ecole Oléron 12 au 17 mai 2013 – Démixtion dans les verres - CEA | Sophie Schuller

A Température constante : Influence de la composition

Ecole Oléron 12 au 17 mai 2013 – Démixtion dans les verres - CEA | Sophie Schuller

| PAGE 10

3 % molaire de MoO₃

Exemple

Exemple

Refroidissement 1°C/min

Verre simplifié SiO₂-B₂O₃-Na₂O-CaO-MoO₃

Ecole Oléron 12 au 17 mai 2013 – Démixtion dans les verres - CEA | Sophie Schuller

A composition constante : Influence de la température

Ecole Oléron 12 au 17 mai 2013 – Démixtion dans les verres - CEA | Sophie Schulle

2-(II) Représentation dans un ternaire

Volumes délimités par des surfaces. A une température T_1 , la décomposition d'un mélange de composition X_M se fait par le plan tangent (définit par le ternaire ABC) le long des lignes de conjugaison appelées conodes.

D'aprés J. W. Cahn, R.J.C., *The initial stages of phase separation in glasses.* Physics and chemistry of glasses, 1965. **6**(5): p. 181-191

2000°

2 liquides (région stable)

> - 2 liquides (intersection)

> > 2 liquides

(volume métastable)

1705°

1436°

CaO

Représentation d'une lacune de miscibilité : Coupes isothermes (1)

Immiscibilité Na₂O-Li₂O-SiO₂

Représentation d'une lacune de miscibilité : Coupes isothermes (2)

Domaine d'immiscibilité dépendant des alcalins (Li, Na, K, Rb, Cs) dans les silicates

Ecole Oléron 12 au 17 mai 2013 – Démixtion dans les verres - CEA | Sophie Schuller

2-(III) Mode de démixtion

 $\mathbf{G''} = \frac{\partial^2 \mathbf{G}}{\partial \mathbf{c}^2}$

La variation de G'' définit la stabilité des phases visà-vis d'une fluctuation de composition

G"> 0 : Domaine stable

- G''< 0 : Domaine instable ou métastable
- G"= 0 correspond aux points C et D appelés points spinodaux

G" est associé au signe de δG

$$G'' = \frac{1}{2} [G(c_0 + \Delta c) + G(c_0 - \Delta c)] - G(c_0)$$

 $\partial G = \frac{1}{2} G''(c_0) \Delta c_0^2$

2-(III) Morphologie dépendante du mode de démixtion

Nucléation croissance (zone I)

Décomposition spinodale (zone II)

Kukizaki, M., Journal of Membrane Science 2010. 360(1-2)

2-(IV) Détermination de la température de démixtion (TCb)

La température critique de séparation de phase, T_{cb} , correspond à la limite au-delà de laquelle la différence entre les deux régions I et II ne peut plus être faite. Dans ce cas, les deux points d'inflexion C et D se confondent et l'enthalpie libre du mélange présente un seul extremum pour lequel : $\frac{\partial^3 G}{\partial c^3} = 0$

$$\frac{\partial G}{\partial X_A} = \Lambda (1 - 2X_A) + RT[lnX_A - Ln(1 - X_A)] = 0$$

$$\frac{\partial^2 G}{\partial X_A^2} = -2\Lambda + RT\left(\frac{1}{X_A} + \frac{1}{1 - X_A}\right) = 0$$
$$TCb = 2\Lambda X_A\left(\frac{1 - X_A}{R}\right)$$

Symétrie de champs de démixtion pour les solutions régulières $\rightarrow X_A = 1/2$

$$\Lambda = -ZN_A[E_{AB} - 1/2(E_{AA} + E_{BB})]$$

2-(V) Démixtion secondaire

Veksler, I.V., Chemical Geology, 2008. **256**(3–4): p. 119-130.

2-(VI) Démixtion stable - métastable

- □ A une température $T > T_{Cb}$, la phase liquide est stable
- □ A une température T_1 , supérieure à la température du monotectique, le domaine d'immiscibilité s'étend dans le domaine d'existence de plusieurs phases liquides et solides en équilibre. L'équilibre est donné par les tangentes L_1 - S_1 et A_1 - $B_1 \rightarrow D$ émixtion stable
- □ A une température T_2 , la courbe d'enthalpie libre du liquide est supérieure à celle du solide. L'équilibre est donné par la tangente L_2 - S_2 . L'équilibre entre les deux phases liquides A_2 et B_2 est métastable → Démixtion métastable

Démixtion stable qui se prolonge dans le domaine métastable

Démixtion entièrement métastable

3- Cinétique de la démixtion

cea

3-(I) Influence du mode de diffusion

Down-Hill diffusion

Up-Hill diffusion

D'aprés E.P. Favras, A.C.M., What is spinodal decomposition, in lecture note, E.s.a.T. review, Editor. 2008. p. 25-27.

Ecole Oléron 12 au 17 mai 2013 – Démixtion dans les verres - CEA | Sophie Schuller

Nucléation-croissance

R. Wheaton, A.G.C., *Evaluation of phase separation in glasses with the use of atomic force microscopy.* Journal of Non-Crystalline of Solids, 2007. **353**: p. 4767-4778. ഫ്

Bouttes, D., Gouillart, E., Dalmas, D., & Vandembroucq, D. (2013). In situ observation of coarsening in a phase-separated glass. In *AIP Conference Proceedings* (Vol. 1518, p. 487).

Modification de la fonction d'enthalpie libre considérée par Becker et Borelius → Ajout d'un terme rattaché à l'énergie d'interface

$$\Delta G = \int [G(c) + K(\nabla c)^2] dv - \int G(c) dv$$

Gradient de concentration (K : coefficient de gradient d'énergie)

 $K(\nabla c)^2$

En considérant les égalités suivantes :

$$\int G(c)dv = VG(c_1)$$

Développement série de Taylor de la variation de G(c) autour de la composition c_1

$$G(c)=G(c_1) + (c - c_1)G' + \frac{1}{2}(c - c_1)^2G''$$

Dans l'hypothèse où

$$\int (c - c_1) dv = 0$$

Variation d'enthalpie entre le système homogène à l'état initial et le système inhomogène

$$\Delta G = \int_{\mathcal{V}} \left[\frac{1}{2}(c-c_1)^2 G'' + K(\nabla c)^2\right] dv$$

Résolution de l'équation de Cahn Hilliard

Cas 1 : Description de la variation de composition comme une fonction sinusoïdale (1)

$$(c - c_1) = A_m cos(\frac{2\pi c}{\lambda}) = A_m cos(\beta u)$$

 $A_m : amplitude$
 $\beta : nombre d'onde$

$$\Delta G = \int_{v} \left[\frac{1}{2}(c-c_1)^2 G'' + K(\nabla c)^2\right] dv$$

Résolution de l'équation par TF \rightarrow *Egalités suivantes :*

$$\int (\mathbf{c} - \mathbf{c}_1) d\mathbf{v} = 0$$
$$\int (\mathbf{c} - \mathbf{c}_1)^2 d\mathbf{v} = \frac{A^2}{2} V$$
$$\int (\nabla \mathbf{c})^2 d\mathbf{v} = A^2 \beta^2 V$$

$$\Delta G = \frac{A^2}{4} \mathbf{V} [G'' + 4K\beta^2]$$

Si G'' <0 la démixtion est spontanée \rightarrow Décomposition spinodale

Résolution de l'équation de Cahn Hilliard

Cas 1 : Description de la variation de composition comme une fonction sinusoïdale (2)

En considérant que l'évolution de la composition en fonction du temps est proportionnelle à la variation de l'enthalpie libre en fonction de la composition, l'égalité suivante : $\frac{\partial G}{\partial t} = D \frac{\partial G}{\partial c}$

→Equation de la diffusion généralisée

$$\frac{\partial c}{\partial t} = \frac{D}{N_{u}} \frac{\partial^{2} G}{\partial c^{2}} \nabla^{2} c - \frac{2Dc}{N_{u}} \nabla^{4} c$$

 N_v : Nombre d'atome par unité de volume D : coefficient de diffusion (tjs>0)

La résolution de cette équation, permet de déterminer les évolutions du facteur d'amplitude des oscillations en fonction du nombre d'onde caractéristique de la morphologie des phases formées.

En considérant le coefficient de diffusion D toujours positif, la résolution des équations impose que le coefficient d'interdiffusion $D^{\frac{\partial^2 G}{\partial c^2}}$ entre les phases soit négatif dans la région de la **décomposition**

Dans ce processus, les éléments diffusent alors contre leurs propres gradients de concentration par **diffusion up-hill**

Résolution de l'équation de Cahn Hilliard

Cas 2 : Description de la variation d'enthalpie libre par une fonction à double potentiel (1)

Fonctionnelle f(c)

$$f(c) = c^2 \frac{(1-c^2)^2}{4}$$

Description de l'évolution des phases séparées par des interfaces diffuses en prenant en compte la variation de la fonction f(c), correspondant à une fonction d'enthalpie libre G(c), caractérisée par une fonction à double potentiel

$$c = \frac{\rho - \rho_b}{\rho_a - \rho_b}$$
si $\rho = \rho_a, c = 1$
si $\rho = \rho_b, c = 0$
si $\rho_a < \rho < \rho_b, 0 < c < 1.$

FIG. 2.1: Exemple de fonction symétrique avec un double puits de potentiel.

La composition c dépendante de la densité des phases a et b joue le rôle d'une indicatrice de phase (appelée champ de phase)

Modèle qui permet de modéliser l'évolution de la composition et de la microstructure des phases séparées en fonction du temps

Résolution de l'équation de Cahn Hilliard

Cas 2 : Description de la variation d'enthalpie libre par une fonction à double potentiel (2)

Evolution de la morphologie des phases séparées (décomposition spinodale) en fonction du temps obtenue par résolution numérique des équations de Cahn-Hilliard couplées aux équations de Navier-Stockes dans un gradient de température

D. Jasnow, J.V., *Coarse-grained description of thermo-capillary flow.* Physical Fluids, 1996. **8**(3).

4- Exemple de démixtion

4-(I) Démixtion stable

Veksler, I.V., et al., *Liquid unmixing kinetics and the extent of immiscibility in the system K*20–*Ca*0–*Fe*0–*Al*203–*Si*02. Chemical Geology, 2008. **256**(3–4): p. 119-130.

' 50 μm

Micrographie BSE de ce verre contenant les phases séparées Lfe et Lsi

Projection de la composition du verre C-112 (triangle B) et des phases liquides séparées (points blanc et gris) représentés dans un pseudo-ternaire (Fa : fayalite, Hd : hedenbergite, Or : orthoclase)

Photo de l'échantillon de verre C-112 trempé après 4 h de centrifugation à 1090 ℃

4-(II) Démixtion stable qui se prolonge dans le domaine métastable (1)

4-(II) Démixtion stable qui se prolonge dans le domaine métastable (3) **Evolution de TCb à Tg**

 SiO_2 -B₂O₃-Na₂O-Cs₂O-MoO₃ - 2,5% molaire de MoO₃

1100°C

Verre transparent obtenu aprés soufflage à l'air à 1100°C

1050°C

Verre opalisé obtenu aprés soufflage à l'air à 1050°C

Image HRTEM

4-(II) Démixtion stable qui se prolonge dans le domaine métastable (4)

Ecole Oléron 12 au 17 mai 2013 - Démixtion dans les verres - CEA | Sophie Schuller

С

5- Caractérisation de la démixtion

Composition des phases ? Mécanismes de formation des différentes phases formées ?

Image MEB verre Umo après refroidissement

Etude la morphologie des verres obtenus aprés soufflage

1 Phase

Etude de la cristallisation des phases par µRaman

Ecole Oléron 12 au 17 mai 2013 – Démixtion dans les verres - CEA | Sophie Schuller

Lorsque T \downarrow : Evolution de la <u>cristallisation</u> des phases séparées

Zone opalescente

° Photo du verre soufflé à 1100 (S1100)

Photo du verre soufflé à 1050 °C (S1050)

Etude la morphologie des verres obtenus aprés soufflage

Nodules = phases séparées contenant des phases cristallisées

Photo du verre soufflé à 1050 ℃ (S1050)

Image Microscope Electronique à Balayage d'un nodule

Ecole Oléron 12 au 17 mai 2013 – Démixtion dans les verres - CEA | Sophie Schuller

1200

Diminution de la température

- →Formation des phases séparées enrichies en Mo, Ca, P, O (Nd, B)
- \rightarrow Diminution des concentrations en MoO₃, P₂O₅, CaO dans la matrice vitreuse
- \rightarrow Augmentation de la concentration en SiO₂
- → Stabilisation des concentrations quand la cristallisation devient importante (1100°C)

cea

Représentation de la lacune de miscibilité présente dans les verres UMo

Lacune de miscibilité dans système vitreux (SiO₂-B₂O₃-Na₂O-Al₂O₃) et (CaO-MoO₃-P₂O₅-Nd₂O₃) du verre AMoP (12% massique MoO₃)

Molar %

CEA | Sophie Schuller - 04 AVRIL 2013

In succession of a continuous of

Estimation des températures de séparation de phase avec une incertitude de 10°C à 15°C

Description du mécanisme de séparation de phase et de cristallisation

- **Température de séparation de phase dépendante de la teneur en MoO**₃ entre 1200°C et 1150°C
- □ Cristallisation de CaMoO₄ dans les phases séparées limites la coalescence des phases à l'état liquide
- Cristallisation des zircons conduit à la formation d'amas de tailles limitées à 200 μm

S. Schuller, O. Pinet, B. Penelon "Liquid-liquid phase separation process in borosilicate liquids enriched in molybdenum and phosphorus oxide » J. Am. Ceram. Soc., vol.94 (2011) 447

Ecole Oléron 12 au 17 mai 2013 – Démixtion dans les verres - CEA | Sophie Schuller

Remerciements

Jacques Rogez : IM2MP Aix Marseille / thermodynamique expérimentale Alain Cartalade : Modèle à champs de phase (CEA Saclay) Emmanuelle Gouillart, David Bouttes : St Gogain recherche / µTomographie X (ESRF) Thibault Charpentier : CEA/IRAMIS / RMN & modélisation Frédéric Angeli : LCLT / RMN MAS Dominique de Ligny : LPCML Lyon / µRaman Renaud Podor , Johann Ravaux, H. Brau : ICSM/LME / MEB environnemental en température Laurent Cormier : UMPC Jussieu / EXAFS, HRTEM Bruno Penelon : SECM/LDMC Sylvie Poissonnet : CEA Saclay/SRMP / Analyse microsonde Ian Farnan : Université Cambridge : RMN HT Scott Kroeker : Université Manitoba : RMN ¹³³Cs