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Nonlinear optical properties of glass

* Introduction non linear optics

* Third order optical response and glass chemistry

* Second order optical response in glass




1st Linear optic

With w being the pulsation of the electromagnetic field
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Non Linear optical response

At the microscopic/molecular level
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At the macroscopic level
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2"d and 3rd order optical responses ... effect of the material symmetry
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2"d and 3rd order optical responses ... effect of the material symmetry

For a centro symmetric material, there is a center of inversion. This symmetry implies that:
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Neumanns Principle: a symmetry operation must leave the sign and intensity of a physical property unchanged
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So combining all we obtain: For a centro symmetric material

P@ = y@FE - —p@ = y@A(_E)(—=F) == %2=0
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Order

Tensor
1P (—w; o, 0)

¥®(0; w, —w)

Effect

Linear electro optical effect
(Pockels effect)
Optical rectification

Description

Under an electric field there is a change of refractive index
in the NLO medium.
A static electric field occurs in the NLO medium under

Second harmonic generation

Generation of light with fre-
quency equal to the sum of
frequencies of incident radia-

illumination.
The emission of light with double frequency ha
illumination of the NLO medium.

It 1s observed at illumination of the NLO medium by two
light sources with different frequency. The frequency of
emission equals the sum of the two excitatig

)((3)(—00; w, —0, 0)

¥ (—w; 0, —0, ®)

1P (3w, 0, w, )

13 (—w4; 01, w2, w3)

tions, @3 =(wp + i)
Kerr effect

Nonlinear refractive index also
called Kerr effect, self phase
modulation.

Third harmonic generation.

Multiwave mixing.

quencies.

Under the action of two electric fields there is a change of
refractive index in the NLO medium.

The refractive index of the medium changes with intensity
according to the formula: n = ny 4 nol. Self-focusing and
self-defocusing of a laser beam are special cases.

There is an emission of light with triple frequency under
illumination of the medium.

When illuminated with three light sources with different
frequencies a generation of light occurs whose frequency
equals the sum of the three excitation frequencies.



Second Harmonic Generation
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SHG
SFG (Sum Frequency Generation
DFG (Difference Frequency Generation)
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Characterization method: Second order optical susceptibility X(z)
The Maker fringes technique
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NLO—> Source of intricate photons !
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Order
2 ¥ (—w; w, 0)

2

Effect

Linear electro optical effect

Description
Under an electric field there is a change of refractiv@

¥®(0; w, —w)
1P (2w; 0, w)

AP (—w3; ), 1)

)((3)(—00; w, —0, 0)

¥ (—w; 0, —0, ®)

1P (3w, 0, w, )

13 (—w4; 01, w2, w3)

(Pockels effect)

Optical rectification

Second harmonic generation

Generation of light with fre-
quency equal to the sum of
frequencies of incident radia-
tions. w3 =(w> + w)

Kerr effect

Nonlinear refractive index also
called Kerr effect, self phase
modulation.

Third harmonic generation.

Multiwave mixing.

in the NLO medium.

A static electric field occurs in the NLO medium under
illumination.

The emission of light with double frequency happens under
illumination of the NLO medium.

It 1s observed at illumination of the NLO medium by two
light sources with different frequency. The frequency of
emission equals the sum of the two excitation source fre-
quencies.

Under the action of two electric fields there is a change of
refractive index in the NLO medium.

The refractive index of the medium changes with intensity
according to the formula: n = ny 4 nol. Self-focusing and
self-defocusing of a laser beam are special cases.

There is an emission of light with triple frequency under
illumination of the medium.

When illuminated with three light sources with different
frequencies a generation of light occurs whose frequency
equals the sum of the three excitation frequencies.



Electro optical effect / Pockels effect Electro optical modulator

¥ (~w; w,0)

PP (w) = ¥ (—w; w, 0)E(0)Ey (et + cc)

P(w) = XVE(w) + YPEO)E(w) = (x® + xPE(0)) E(w) = XeprE(w)

Pour rappel: (n2 =1+ 47‘[)((1))



Integrated photonics
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Order
2

Tensor
1P (—w; o, 0)

¥®(0; w, —w)
1P (2w; 0, w)

AP (—w3; ), 1)

Effect

Linear electro optical effect
(Pockels effect)

Optical rectification

Second harmonic generation

Generation of light with fre-
quency equal to the sum of
frequencies of incident radia-
tions. @3 =(w7 + w1)

Description

Under an electric field there is a change of refractive index
in the NLO medium.

A static electric field occurs in the NLO medium under
illumination.

The emission of light with double frequency happens under
illumination of the NLO medium.

It 1s observed at illumination of the NLO medium by two
light sources with different frequency. The frequency of
emission equals the sum of the two excitation source fre-
quencies.

1@ (—w; w, —0, 0)

1P (—w; v, —w, w)

13w, v, v, v)

13 (—w4; 01, w2, w3)

Kerr effect

Nonlinear refractive index also
called Kerr effect, self phase
modulation.

Third harmonic generation.

Multiwave mixing.

Under the action of two electric fields there is a change of
refractive index in the NLO medium.

The refractive index of the medium changes with intensity
according to the formula: n = ny 4 nol. Self-focusing and
self-defocusing of a laser beam are special cases.

There is an emission of light with triple frequency under
illumination of the medium.

When illuminated with three light sources with different
frequencies a generation of light occurs whose frequency
equals the sum of the three excitation frequencies.




Optical Kerr effect / non linear optical index
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All-Optical Switching and Logic
An optical beam can control the phase or amplitude of another.
Applications: optical logic gates, all-optical switches, optical multiplexers.

Michael Eisenstein, Photonics Spectra 2020
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SuperContinuum Generation

the generation of a supercontinuum is an interesting infrared source because of its properties
in terms of brightness, tunability and coherence. Supercontinuum is the spectral broadening
obtained as a result of the non-linear propagation of an optical wave in a medium.
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Origin of the spectral broadening:
In the case of short pulses, SCG in the normal dispersion regime is based on phase
self-modulation (SPM), four-wave mixing (FWM) and Raman scattering (RS).

Optical Kerr effect:

-n(I)=n0 ! n2°I

Induce a variation of the Phase of the propagating wave:
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Origin of the spectral broadening:
In the case of short pulses, SCG in the normal dispersion regime is based on phase
self-modulation (SPM), four-wave mixing (FWM) and Raman scattering (RS).

I,

= a) State2 ----p-r----
S
- : (05 w3
& Front : Fin de
g : i i - State 3
= d’impulsion : F'impulsion

: State 1 ----p-

: w

| 1 G
2 ! Y
[ 1 . | |
8 L B
2 F s - Ws =)+ Wy — W3
o WO B e oo -
T i
0 & 1
w 5

| i |

Tempst




Origin of the spectral broadening:
In the case of short pulses, SCG in the normal dispersion regime is based on phase
self-modulation (SPM), four-wave mixing (FWM) and Raman scattering (RS).
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SuperContinuum Generation

the generation of a supercontinuum is an interesting infrared source because of its properties
in terms of brightness, tunability and coherence. Supercontinuum is the spectral broadening
obtained as a result of the non-linear propagation of an optical wave in a medium.
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Nonlinear optical properties of glass

* Introduction non linear optics
e Characterization methods

* Third order optical response and glass chemistry

* Two important third order optical process for applications:
* Raman Gain
* Supercontinuum generation

* Second order optical response in glass
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It has been established that the fast response time
Kerr effect (1 picosecond) out of resonance is, in a
first approximation, following the evolution the
glass polarizability and more precisely the
polarizability of the anions (F-<O?*<S?-<Se?*)

Considering a specific glass family, it appears that
the evolution is complex and the impact of the
glass structure and composition has a huge impact
on the nonlinear optical responses of the material

Regarding oxides, silicates, phosphates and borates,
the introduction of alkali and alkaline earth ions by
forming non-bridging oxygen between the glass
formers increases the linear and the nonlinear
indices
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Measured at 1.5 um
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Nonlinear optical properties more than 10 times silica can be

obtained in lone pairs of electron ns? oxide based compounds.

It is the case for instance of tellurite glass composition in which

the tellurium oxide amount can reach 99% of TeO, . The Te**

ion occupies a TeO, disphenoid site where the tellurium ion is at

O , the center of a trigonal bipyramid TeO,E in which the electronic
doublet E form the third equatorial corner.

Glass composition | Third order susceptibility

(Mol%) x3) (1023 SI) + 20%

2.12

90Te0,-10Tl,0 141
././\’* — 90Te0,-10Nb,0, 115
90Te0,-10WO, 97
1.87 Te 90Te0,-10Al,0, 78
90Te0,-10Ga,0, 72
90Te0,-10Sb,0, 58
SF59 (lead silicate) 57

‘ The highest nonlinear indices observed in tellurite glass have

been obtained when the TeO, is combined with other ions also
having a ns2 lone pair of electrons such as TI*, Pb?* or Bi3*.




PHYSICAL CHEMISTRY ——

Raman Gain in Tellurite Glass: How Combination of IR, Raman,
Hyper-Raman and Hyper—Raerigh Brings New Understandings

Vincent Rodriguez,*" Guillaume Guery,"*" Marc Dussauze,” Frederic Adamietz,” Thierry Cardinal,’
and Kathleen Richardson™!

"Université de Bordeaux, Institut des Sciences Moléculaires, CNRS UMR 5255, 351 cours de la Libération, 33405 Talence Cedex,

France
*CNRS, Université de Bordeaux, ICMCB UPR 9048, 87 av. Schweitzer, 33608 Pessac Cedex, France
SCOMSET, School of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States

IcrREOL, College of Optics and Photonics, Department of Materials Science and Engineering, University of Central Florida, Orlando,
Florida 32816, United States

© Supporting Information

ABSTRACT: A new multimodal approach that combines linear and

nonlinear vibrational spectroscopies and hyper-Rayleigh scattering M
has been applied in the TeQ,—TaO;;,;—Zn0 glass system to assess
and quantify the relation between Raman gain and optical responses
within the glass’ network arrangement. The level of polymerization
of the TeQ, chain-like structure in a TeO, glass system has been
identified to be the main parameter for reaching high linear and
nonlinear optical constant. We have observed that replacement of
TaOs;, by ZnO strongly modifies the optical properties and,
primarily, the Raman and hyper-Raman spectra of the glasses. In
particular, we clearly demonstrate a linear relationship between
Raman gain and the linear and second-order optical response of the
glass, which is directly related to the number density of TeO, chain-
like units. Assuming that only TeO, chain-like units contribute
significantly to the glass’ polarizability, we have found that about 30% of the Te atoms contribute to the hyperpolarizability of the
binary system 80TeO,—20Zn0 in very good accordance with neutron diffraction results.
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Nonlinear optical properties of glass

* Introduction non linear optics
* Characterization methods
* Third order optical response and glass chemistry

* Second order optical response in glass
* Glass ceramic
e Optical poling
* Thermal poling




2"d and 3rd order optical responses ... effect of the material symmetry

For a centro symmetric material, there is a center of inversion. This symmetry implies that:
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Neumanns Principle: a symmetry operation must leave the sign and intensity of a physical property unchanged

2 g 00

So combining all we obtain: For a centro symmetric material

P@ = y@FE - —p@ = y@A(_E)(—=F) == %2=0



Second harmonic generation in transparent surface crystallized glasses L.
with stillwellite-type LaBGeOg T,=824°C

powder
Y. Takahashi, Y. Benino, T. Fujiwara, and T, Komatsu®

Department of Chemistry, Nagaoka University of Technology, Kamitomioka-cho, Nagaoka 940-2188, Japan
(Received 24 July 2000; aceepted for publication 6 February 2001)

exo.—

T,=673°C
Transparent optical nonlinear crystallized glasses with the composition of 25L.a,0; 25B,0; 50Ge0,,
stoichiometric to ferroelectric stillwellite-type LaBGeO; crystalline phase, have been prepared by a
two-step heat-treatment (first heat treatment: 7', = 670°C, 7,=10h, second heat-treatment: T, 15),
and their second harmonic (SH) intensities have been examined using the Maker fringe method. The bulk Tp=802°¢
samples obtained by heat treatments at T,=720~-725°C for ¢;=3h show only surface

T,=670°C
crystallization and exhibit clear and fine (narrow) fringe patterns. The samples heat treated at T, —uﬁ__/\—

=740 and 750 ° C exhibit relatively strong SH intensities, but the fringe patterns in such samples are

T,=807°C

—endo.

T,2851°C

broad. It is proposed that SH waves generated from surface LaBGeOs crystalline layers scatter at

LaBGeOs crystals formed in the interior of glass, causing the disappearance of fine fringe patterns. PR SV T TR [ S '

© 2001 American Institute of Physics. [DOI: 10.1063/1.1360699] 400 500 600 700 800 900 1000
Temperature / °C

FIG. 1. DTA curves for bulk and powdered glasses of
25La,0; 25B,0; 50Ge0,. Healing rate was 10 K min~ '

0.0003 —

T

0.0002

0.0001

SH intensity (arb.u.)

Incident angle / deg.

FIG. 6. Maker fringe patterns for transparent LBGO surface crystallized
glasses obtained by heat treatment at 7,=725 °C for 7,=3 h. SH intensity

FIG. 7. Polanzation micrographs for transparent L BGO surface crystallized was measured pp- and Sp'p()larlzatlon modes.
glass obtained by heat treatment at 7,=750°C for 1,=3 h.



Synthesis and Multiscale Evaluation of LiNbO;-Containing

Silicate Glass-Ceramics with Efficient Isotropic SHG
Response

Hélene Vigouroux, Evelyne Fargin,* Sonia Gomez, Bruno Le Garrec,
Grigoris Mountrichas, Efstratios Kamitsos, Frédéric Adamietz, Marc Dussauze,

and Vincent Rodriguez*

Sample Treatment nucleation/  Initial thickness Final thickness
growth [wm] for optical
characterizations
[um]
LNS25_a 620 °C 1 h/690 °C 75 min 850 760
LNS25_b1 580 °C 2 h/670 °C 17 min 1650 1650
LNS25_b2 580 °C 2 h/670 °C 17 min 1700 500
LNS25_b3 580 °C 2 h/670 °C 17 min 1650 440

(a) —=— LNS25 glass (b)
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e
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Figure 2. Typical spherulite of LNS25_a glass-ceramic sample a) observed through an optical
microscope in the transmission mode and b) a high-resolution environmental SEM. The xyz
axes represent the arbitrary orthogonal lab-framework. Points 1, 2, and 3 symbolize different
areas where further analyses were carried out.
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Figure 4. Probing a spherulite of LNS25_a glass ceramic: Raman mapping at different angles of
polarization (0, 30, 60, 90%) (left) and micro-SHC mapping at the same angle of polarizations
(right). Both mapping scales are expressed in um along X and Y directions.
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Nonlinear optical crystal-line writing in glass by yttrium aluminum garnet
laser irradiation

Tsuyoshi Honma, Yasuhiko Benino, Takumi Fujiwara, and Takayuki Komatsu®
Department of Chemistry, Nagaoka University of Technology, Nagaoka 940-2188, Japan

Ryuji Sato
Department of Materials Engineering, Tournoka National College of Technology, Tsuruoka 997-8511, Japan

(Received 5 November 2002; accepted 16 December 2002)

Crystal lines with second-order optical nonlinearity have been successfully fabricated at the surface
of 108Sm,0;.35B1,0;.35B,0; glass by continuous irradiation of Nd:YAG laser. The laser-induced
crystalline phase was confirmed to be Biy;Smy;BO; by x-ray diffraction measurements, and
second-harmonic generation (SHG) from the phase was clearly observed. An array structure of
crystal lines was fabricated by laser writing under automatic computer control, and Maker fringe
patterns of SHG were observed, indicating that the direction of polarization in the structure with a
crystal line array was parallel to the sample surface. In addition, we measured polarization optical
microphotographs, and found uniform phase retardation for a whole length of crystal lines. It is
strongly suggested from these results that crystal lines by laser irradiation are formed in
single-domain crystalline phase (single crystal) with second-order nonlinearity. © 2003 American
Institute of Physics. [DOI: 10.1063/1.1544059]

FIG. 1. Polarization optical microphotographs [top (surface), cross-section,
side views] for the sample obtained by YAG laser irradiation (power: 0.66
W, scanning speed: 10 gms™?).



Direct laser-writing of ferroelectric
single-crystal waveguide
architectures in glass for 3D
Integrated optics

Adam Stone*, Himanshu Jain*, Volkmar Dierolf?, Masaaki Sakakura3,
Yasuhiko Shimotsuma+, Kiyotaka Miura#, Kazuyuki Hirao%, Jerome Lapointes &
Raman Kashyaps®

Sci. Rep. 5, 10391 (2015)
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Figure 1. EBSD results for a polycrystal line grown at 25 um/s scan speed and 500mW average power,

with no aberration correction. Crystal orientation IPF maps overlaid with grayscale image quality masks
are given in (a) with respect to the three orthogonal axes indicated to the left of each map. The color
correspondence of crystal orientation parallel to each reference axis is given in (b}, and a schematic of the
reference coordinate systemn relative to the sample geometry is given in (). Inversion averaging was disabled
in the OIM software in order to highlight the 180° twin (red region in the x-map). An example diffraction
pattern is included in (d), and (e) shows the low-angle grain structure in the x-oriented IPF map, converted
to grayscale and contrast-enhanced.

Figure 2. EBSD results for a single-crystal line grown at 42jum/s scan speed and 300mW average power,
with aberration correction applied. Crystal orientation IPF maps overlaid with grayscale image quality
masks are given in (a) with respect to the same reference axis defined in Fig. 1. The color correspondence of
crystal orientation parallel to cach reference axis is given in (b), and an illustration of the lattice oricntation
(represented by a hexagonal cell) is given in (¢). The angular deviations from the average orientation are
mapped in (d) to confirm the absence of low-angle grain boundaries.



Figure 17: birefringence micrographs of crystal junctions written inside a LaBGeO; glass by
femtosecond laser showing a) independent lattice orientations developed in each branch, b)the
merging of the two branches back to a single line. The angle of either the fast or slow axis of
birefringence is indicated by the color wheel. [98]
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T, J. Driscoll and N. M. Lawandy Vol. 11, No. 2/February 1994/J. Opt. Soc. Am. B 355 M @, 20 n ® Nd:YAG (1.064um)
x U mode locked (76 MHz)
KTP Q-switched (1 kHz)
Optically encoded second-harmonic generation in bulk
silica-based glasses P1 Lock- In
Amplifier |
T. J. Driscoll A2 4 P2 L S L P3 BP
Department of Physics, Brown University, Providence, Rhode Island 02912 N n n n a n ,I
N. M. Lawandy M\ 1] ] v oy []] PMT
Division of Engineering and Department of Physics, Brown University, Providence, Rhode Island 02912 RG 715 IR HR m
Received January 15, 1993; revised manuscript received May 20, 1983
... a free-space second-harmonic mode whose symmetry
and tensor components were more consistent with an
internal electric field ...
2 )((2)(0; W, —w) Optical rectification A static electric field occurs in the NLO medium under

illumination.

¥ P (—2w; w, 0)=3x®2w;w,w,0).Ep.



Imaging the nonlinear grating
in frequency-doubling fibres

W. Margulis™, F. Laurell* & B. Lesche]

* Physics Department, Pontificia Universidade Catdlica do Rio de
Janeiro, Rio de Janeiro, 22453-900, Brazil

T Physics |l Department, Royal Institute of Technology,
Stockholm, $10044, Sweden

I Physics Institute, Federal University of Rio de Janeiro,

Rio de Janeiro, 21945-970, Brazil

NATURE - VOL 378 - 14 DECEMBER 1995

S60 pm

Second-order nonlinear gratings in frequency-doubling fibers revealed by chemical attack and
observed using a phase-contrast microscope [94]
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Thermally poled glasses
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Large second-order nonlinearity in poled fused silica

R. A. Myers, N. Mukherjee, and S. R. J. Brueck

Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87131

Received July 15, 1991

A large second-order nonlinearity [x® ~ 1pm/V ~ 0.2 & for LiNbOs] is induced in the near-surface (~4 pm)
region of commercial fused-silica optical flats by a temperature (250-325°C) and electric-field (E ~ 5 x
10* V/em) poling process. Once formed, the nonlinearity, which is roughly 10°-10* times larger than that found
in fiber second-harmonic experiments, is extremely stable at room temperature and laboratory ambient. The
nonlinearity can be cycled by repeated depoling (temperature only) and repoling (temperature and electric field)

processes without history effects. Possible mechanisms, including nonlinear moieties and electrie-field-induced
second-order nonlinearities, are discussed.

0.5

SHG Signal (arb. units)

0_0 L ] L L L L 1
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Angle of Incidence {degrees)
Fig. 1. SHG signal from a poled Optosil sample versus

the angle of incidence for a TM-polarized fundamental
beam at 1.06 um.
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Fig. 2. SHG signal versus the poling voltage for a fixed
temperature and poling time. The signal was obtained on
a single sample with successive polings at higher poling

voltages. ;



Thermally poled glass: frozen-in electric field or oriented dipoles?

P.G. Kazansky, P.St.J. Russel

Optoelectronics Research Centre, University of Southampton, Southampton S09 SNH, UK

Received 25 February 1994; revised manuscript received 24 May 1994

Abstract

Evidence that a frozen-in space charge field causes the appearance of high quadratic nonlinearities in thermally poled glass is
obtained from experimental tests of the ratio of nonlinear tensor components and the spatial distribution of the induced x . A
mechanism to explain the fixation of the x‘*) near the anodic surface is proposed.
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Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold
for the onset of a second-order nonlinearity

Yves Quiquempois™
Université des Sciences et Technologies de Lille, Laboratoive de Physique des Lasers, Atomes et Molécules, Batiment P35,
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(Received 16 November 2001; published 4 April 2002)

T. M. Proctor and P. M. Sutton, “Static Space-Charge Distributions With
a Single Mobile Charge Carrier,” J. Chem. Phys., 30 212 (1959).
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Integrated fiber Mach-Zehnder interferometer for
electro-optic switching

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis
Acreo, Electrum 236, 5E-164 40 Kista, Sweden

Received February 19, 2002

Molten alloys under high pressure were used to obtain fibers with long internal electrodes that are solid at
room temperature,  An integrated Mach—Zehnder interferometer was constructed from a twin-core twin-haole
fiber that permitted application of an electric field preferentially to one of the cores. Good stability and
a switching voltage of 1.4 kV were measured with a 1-m-long fiber device with a quadratic voltage depen-
dence, © 2002 Optical Society of America

OCIS codes:  060,4370, 190.4360,

Fig. 6.1
Example of a
microstructured
optical fiber
designed for elec
trical poling. In
black: the holes
for electrode in-
sertion: in white
the core of the
fiber. Reprinted
from [6.128]

P g i e

Fiber with holes
(00

- High pressure

Liguid metal

High temperature
Fig. 1. Schematic diagram of the metal-insertion tech-
nique. The fiber cross section is also shown.

Planar glass devices for efficient periodic
poling

Jacob Fage-Pedersen, Rune Jacobsen, and *Martin Kristensen
Research Center COM, Technical University of Denmark, building 345V,
DK-2800 Kgs. Lyngby, Denmark
*Present address: Department of Physics and Astronomy, University of Aarhus,
DK-8000 Arhus C, Denmark

fage@com.diu.dk

2005/ Vol. 13, No. 21/ OPTICS EXPRESS 8514



o Electric field induced second order
optical response

OPTICS LETTERS / Vol. 16, No. 22 / November 15, 1991

Large second-order nonlinearity in poled fused silica

R. A. Myers, N. Mukherjee, and S. R. J. Brueck
Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87131

x?)=0.1 pm/V

Recall, LINbO;: x(J = 60 pm/V

Measured at 1.5 pm
n2inz sio,
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M. Dussauze, T. Cardinal, Springer Handbook. Glass 2019



Sulfide, [
Selenide L

Oxide ¢

Fluoride?

Which family of Thermally poled glasses ?

Measured at 1.5 pm
Poling induced % (pm/V)
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L. Karam Thesis Nb205

O Bulk-BPN

A film 0.7 at.% Na
0,00 5 1,00 A film 5 at.% Na

A  film 10 at.% Na

Raman intensity (a.u)

—&— bpndT-bpn3s
o4 ——bpnd3-bpn3d
A —0— bpnd0-bpn35

275 500 500 700 800 900 1000110012001300
i

-_—
o
o
o
o
o
difference d'intensits relative

Table 1
Results obtained from best fits to experimental data for bpn glasses
11064 nm M532 nm () (pm/V) L (um)
+ 0.01 + 0.01 + 0.1 +0.1
Bpn35 1.73 1.82 0.16 32
Bpn40 1.76 1.84 1.3 4.2
Bpn45 1.86 1.93 2.8 43
Bpn47 1.91 1.99 3.6 3.7
Bpn48 1.93 2.02 4.2 3.2

Opt. Materials 2006



Micro-imprinting by thermal poling
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Micro-imprinting by thermal poling
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Micro-imprinting by thermal poling
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Confocal SHG reflectance microscopy,

X-linearly polarized beam
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3-Spatial and geometry control of electro-optical anisotropy

SHG intensity (a.u.)

X(z) = 3 x(s)'Eint

—=Geometry control and Micrometric localization of the SHG response

Adv. Optical Mater. (2016) 4, 6, 929-935



3-Spatial and geometry control of electro-optical anisotropy
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3-Spatial and geometry control of electro-optical anisotropy
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3-Spatial and geometry control of electro-optical anisotropy
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3-Spatial and geometry control of electro-optical anisotropy
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L. Karam Thesis

o Bulk-BPN

A film 0.7 at.% Na
1,00 A film 5 at.% Na

A film 10 at.% Na

0,75/

Na,0 o000 025 050 075 1,00 PO, Bulk glass synthesis Sputtered film
Liquid to solid in few seconds Plasma to solid
~1000 °C to ~20 °C ~1016 °C/s



Transmission (%)

L. Karam Thesis
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Electrode
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o Structuring of the sodium concentration following the pattern of the electrode
o Spatial homogeneity of the structural rearrangements
o Polarization mechanisms similar to those observed in bulk materials




Set-up:
Confocal SHG reflectance microscope
combined with Raman microscope on

the same spot

Integrated Raman
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L. Karam Thesis

Response localized on a few
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Quantification:

-Quadratic laws

-Reference material LiINbO;single crystal probed
along c axis (x*?,,,= 55 pm/V)

-Taking in account Fresnel losses and each
material’s dispersion

x?=29pm/Vv

Highest value ever obtained on amorphous material






6. Nonlinear Optical Properties of Glass

Marc Dussauze, Thierry Cardinal

Numerous innovations in photonics have been
realized on the basis of nonlinear optical prop-
erties, notably in information technologies. To
take advantage of the nonlinear optical prop=-
erties of glass, multidisciplinary research efforts
were necessary, combining optics, glass chemistry,
material science, as well as development of optical
or electrical polarizations processes. This chapter
addresses both fundamental aspects of nonlin-
ear optical responses and also the exploitation of
nonlinear optical phenomena in glassy material.
It starts by a general introduction to nonlinear
optical phenomena and concepts. Then, the spe-
cific cases of second and third optical responses
in glasses are treated separately and described in
detail as a function of the corresponding optical
phenomena, the various glass families, and their
applications.
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