QUE SAIT-ON DE L'ENVIRONNEMENT DU FER DANS LES VERRES SILICATÉS ?

Gérald LELONG, V. Vercamer, A. Juhin, G. Calas, L. Galoisy, C. Brouder, MA Arrio

Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Paris, France

LE FER DANS LES MINÉRAUX ET GEMMES

Almandin (grenat)

Andradite (grenat) Orthose

Péridot

Hypersthene

Diopside

Gillespite

LE FER DANS LES MINÉRAUX ET GEMMES

Almandin (grenat) $Fe^{2+}_{3}Al_{2}(SiO_{4})_{3}$

Andradite (grenat) $Ca_3Fe^{3+}_2(SiO_4)_3$

Orthose

Fe³⁺:KAISi₃O₈

Péridot (Mg,Fe²⁺)₂SiO₄

 $\begin{array}{l} \textbf{Hypersthene} \\ (Fe^{2+},Mg)SiO_{3} \end{array}$

Diopside Ca(Mg,Fe²⁺)Si₂O₆

Gillespite BaFe²⁺Si₄O₁₀

RELATION STRUCTURE / COULEUR

0.5wt.% de Fe₂O₃

 $Fe^{2+} + Fe^{3+}$ Fe^{2+}

Fe³⁺

Conditions réductrices

SPECTROSCOPIE D'ABSORPTION UV-VIS

SPECTROSCOPIE D'ABSORPTION UV-VIS

Coefficient d'absorption du Fe dans un verre à vitre:

Rôle majeur des ions Fe²⁺ alors qu'ils ne représentent que 25% du fer total !

SPECTROSCOPIE D'ABSORPTION UV-VIS

Fe³⁺ verre vs minéral

Signaux additionnels dans le verre

Fe³⁺ dans un sodo-calcique 16Na₂O-10CaO-74SiO₂ Rescaled optical absorption (a.u.)

Oxidized 5%

ferriorthoclase ^[4]Fe³⁺ dans KAlSi₃O₈

SPECTROSCOPIE D'ABSORPTION OPTIQUE

SPECTROSCOPIE D'ABSORPTION OPTIQUE

MINERAUX COMME REFERENCES

LIMITES DU « FINGERPRINT »

Minerals give a good overview of the spectroscopic trends, but there are some major differences to keep in mind:

- iron sites are distributed in glasses :

- Coexistence of several coordination number,
- Site distorsions (bond length, angles...)
- Crystal field
- some symetries do not exist in minerals...
- heterovalence of Fe (Fe²⁺ & Fe³⁺ simultaneously)

Optical absorption spectra calculations

→ Access intermediate geometries that do not exist in minerals

ORIGINES DES TRANSITIONS OPTIQUES

→ Origine des bandes d'absorption: **transitions entre niveaux du fer**

ORIGINES DES TRANSITIONS OPTIQUES

- → Origine des bandes d'absorption: **transitions entre niveaux du fer**
- → L'éclatement des niveaux 3d est liée à la symétrie locale imposée par les ligands

LIGAND FIELD MULTIPLETS APPROACH

$$\hat{H}_{ion} = \hat{H}_{kin} + \hat{H}_{e^-/N} + \hat{H}_{e^-/e^-} + \hat{H}_{SO} + \hat{H}_{LF}$$

Kinetic energy (free ion calculation)

Electron-nucleus interaction (free ion calculation)

Electron-electron interaction

(free ion calculation, might be reduced due to covalency)

Spin-orbit coupling

(on every open-shell, free ion calculation)

Ligand field

(strongly material dependent, parameterized to fit experiments, no straightforward calculation methods) LIGAND FIELD MULTIPLETS APPROACH

$$\hat{H}_{ion} = \hat{H}_{kin} + \hat{H}_{e^-/N} + \hat{H}_{e^-/e^-} + \hat{H}_{SO} + \hat{H}_{LF}$$

Ligand field represents the local geometry

Mono-atomic model → no explicit Fe–O distances and angles

Problem: *d-d* transitions are forbidden ⇒ no optical spectra

LIGAND FIELD MULTIPLETS APPROACH

$$\hat{H}_{ion} = \hat{H}_{kin} + \hat{H}_{e^-/N} + \hat{H}_{e^-/e^-} + \hat{H}_{SO} + \hat{H}_{LF} + \hat{H}_{hybrid}$$

In the case of non-centrosymmetric geometry (e.g. T_d , C_{4v} or D_{3h}) 3d and 4p can mix (V_{pd} hybridization parameter)

With hybridization, you give a 4p character to the 3d electrons, which enables the d-d transitions:

 $(3d,4p)^6 \rightarrow (3d,4p)^6$ (Electric dipole)

Here implemented with Quanty (M. W. Haverkort and co-workers)

All calculations with one model

calculated optical spectra

TANABE-SUGANO OF Fe^{2+} in O_h

Vercamer et al. Physical Review B 94 245115 (2016)

⇒ Multiplet calculations allow to reproduce the optical absorption spectra of Fe²⁺ in a wide variety of site symmetries

Vercamer et al. Physical Review B 94 245115 (2016)

How to probe the 3d levels of Fe?

XAS measured @ ID26 (ESRF)

EXP. VS CALC. FOR FE²⁺ IN MINERALS

Vercamer et al. Physical Review B 94 245115 (2016)

FE ENVIRONMENT IN GLASSES ?

\Rightarrow Distribution of Fe environment in glasses

⇒ By distributing the crystal field parameters around the values of crystalline samples

FE ENVIRONMENT IN GLASSES ?

Thanks to multiplet calculations, we can probe the effects of parameters 10Dq and β

APPLICATION TO GLASSES...

Example with 25 optical spectra calculated with a D3h symmetry **Uniform** proportion of each site

APPLICATION TO GLASSES...

Example with 25 optical spectra calculated with a D3h symmetry **Distributed** proportion of each site

APPLICATION TO GLASSES...

 \Rightarrow XAS Fe K pre-edge is less sensitive than OAS for slight distribution of Fe²⁺ sites

A GENERAL COMMENT...

Fe²⁺ optical signature in glass can be understood with a limited distribution of ligand field parameters in $C_{3\nu}$ geometry

- \rightarrow preferential $C_{3\nu}$ sites have been found
- \rightarrow several kind of **5-fold** sites from pure 5-fold to 4+1?

Can we still talk about coordination number if the structure is composed of a distribution of sites?

CONCLUSIONS

Fingerprint analysis of glasses

Fingerprint brings useful but limited information on structure and spectroscopy of iron in glasses

Multiplet calculations on crystals

Multiplet calculations are fast and adapted to the multispectroscopic approach to extract tendencies

Application: calculation of Fe²⁺ in glass

5-fold Fe²⁺ have to be considered for optical interpretation. Site distribution to reproduce glass amorphous nature. Optical absorption \rightarrow sensitive to slight geometry variations

ACKNOWLEDGEMENTS

IMPMC, Paris (France)

<u>Vincent Vercamer</u>, Georges Calas, Laurent Cormier, Laurence Galoisy, Amélie Juhin, Marianne Arrio, Christian Brouder

AGC, CRC (Japan)

Yusuke Arai, Hiroyuki Hijiya, Tetsuya Nakashima, Satoru Tomeno, Shiro Funatsu and Yuki Kondo

ESRF, Grenoble (France)

Peter Glatzel