

Surface & Interface : Réactivité Chimique des Matériaux

Importance de la solubilité

Contrôle de la précipitation > Affinage Dissolution Corrosion des BT dans le CMAS ➔ céramiques Ni-30Cr dans un verre sodocalcique Cr_2O_3 Métaux ou alliages passivables 50 µm

La dissolution des céramiques

 $=a_{0^{2-}}^{x} \times a_{M^{2x+}}$

 $MO_x \longrightarrow xO^{2-} + M^{(2x)+}$

 $MO_x + yO^{2-}$

 $\rightarrow MO_{x+y}^{(2y)-}$

Dissolution : fonction de la basicité

... à cations multivalents

peuvent être oxydés $\leftarrow \underbrace{\frac{n}{4}O}_{4} + ne^{-} \Leftrightarrow \frac{n}{2}O^{2-} \rightarrow \text{peuvent être réduits}$ $E_{verre} = E_{o_2/o^{2-}}^{0} + \frac{IT}{2F}\ln\frac{\sqrt{fo_2}}{a_{O^{2-}}} = E_{o_{v/red}} = E_{o_{v/red}}^{0} + \frac{IT}{nF}\ln\frac{a_{ox}^n}{a_{red}^m}$

Redox du verre impose le rapport (ox)/(red) : fonction de la fugacité en oxygène

Solubilité des céramiques à cations multivalents : basicité, fugacité et température

Sommaire

- Protocole expérimental
- Chimie du chrome
- Le chrome dans les verres sodiques :
 Basicité
 Fugacité en oxygène
 Température
- Cas du chrome ou de l'étain dans des verres ternaires
- Conclusions

Protocole expérimental

Synthèse des verres : Na₂O-xSiO₂, Na₂O-yCaO-xSiO₂, Na₂O-yB₂O₃-xSiO₂

Basicité du milieu

Basicité optique Λ – modèle proposé par *Duffy & Ingram :*

$$\Lambda_{verre} = \sum x_i \times \Lambda_i$$

 $\begin{array}{l} x_i : \text{ la fraction molaire équivalente de l'oxyde i} \\ \Lambda_i : \text{ la basicité optique de l'oxyde i} \\ \Lambda_{SiO2} = 0,48 \\ \Lambda_{Na2O} = 1,15 \\ \Lambda_{CaO} = 1 \\ \Lambda_{B2O3} = 0,42 \end{array}$

Corrélation relativement bonne entre le modèle et les mesures in-situ par électrochimie

Protocole expérimental : le réacteur

Température & Fugacité en oxygène

 $1100^{\circ}C < T < 1400^{\circ}C \& 10^{-12} < f(O_2) < 0,2$

Protocole expérimental : caractérisation

Chimie du chrome

Réaction oxydation

$$Cr^{III}O_x^{(2x-3)-}(verre) + (3/4)O_2(gaz) + (z - x - 3/2)O^{2-}(verre) \Leftrightarrow Cr^{VI}O_z^{(2z-6)-}(verre)$$

Réaction acido-basique

$$\int_{Q_2} \frac{1}{2} Cr_2 O_3 (cristal) + (x - \frac{3}{2})O^{2-}(verre) \Leftrightarrow Cr^{III}O_x^{(2x-3)-}(verre)$$

$$\int_{Q_2} \frac{1}{2} Cr_2 O_3 (cristal) + (x - \frac{3}{2})O^{2-}(verre) \Leftrightarrow Cr^{III}O_x^{(2x-3)-}(verre)$$

$$\int_{Q_2} \frac{1}{2} Cr_2 O_3 (cristal) + (x - \frac{3}{2})O^{2-}(verre) \Leftrightarrow Cr^{III}O_x^{(2x-3)-}(verre)$$

$$\int_{Q_2} \frac{1}{2} Cr_2 O_3 (cristal) + (x - \frac{3}{2})O^{2-}(verre) \Leftrightarrow Cr^{III}O_x^{(2x-3)-}(verre)$$

$$\int_{Q_2} \frac{1}{2} Cr_2 O_3 (cristal) + (x - \frac{3}{2})O^{2-}(verre) \Leftrightarrow Cr^{III}O_x^{(2x-3)-}(verre)$$

$$\int_{Q_2} \frac{1}{2} Cr_2 O_3 (cristal) + (x - \frac{3}{2})O^{2-}(verre) \Leftrightarrow Cr^{III}O_x^{(2x-3)-}(verre)$$

Quantification : $Cr_{tot} = Cr^{II} + Cr^{III} + Cr^{VI} = Cr^{II}O_{v}^{(2y-2)} + Cr^{III}O_{x}^{(2x3)} + Cr^{VI}O_{z}^{(2z-6)}$

Le rédox : du liquide aux verres e Fct°(O²⁻, f(O₂)) st Fct°(O²⁻) 22 Fct°(O²⁻, f(O₂))

Chimie du chrome

Réaction oxydation

$$Cr^{III}O_x^{(2x-3)-}(verre) + \binom{3}{4}O_2(gaz) + (z - x - \frac{3}{2})O^{2-}(verre) \Leftrightarrow Cr^{VI}O_z^{(2z-6)-}(verre)$$

$$\log \frac{a[CrO_z^{(2z-6)-}]}{a[CrO_x^{(2z-3)-}]} = +\frac{3}{4}\log PO_2 + \left(z - x - \frac{3}{2}\right)\log a[O^{2-}] + \log K_{Ox}$$

Réaction réduction

$$Cr^{III}O_x^{(2x-3)-}(verre) + (y-x+\frac{1}{2})O^{2-}(verre) \Leftrightarrow Cr^{II}O_y^{(2y-2)-} + \frac{1}{4}O_2(gaz)$$

$$\log \frac{a[CrO_y^{(2y-2)^-}]}{a[CrO_x^{(2x-3)^-}]} = -\frac{1}{4}\log PO_2 + \left(y - x + \frac{1}{2}\right)\log a[O^{2^-}] + \log K_{\text{Rea}}$$

Chrome dans les verres sodiques : fugacité

Augmentation de la solubilité en Cr dans les conditions oxydantes et dans les conditions réductrices

013

Chrome dans les verres sodiques : fugacité

Chrome dans les verres sodiques : fugacité & basicité

Chrome dans les verres sodiques : température

La limite de solubilité augmente avec la température

Chrome dans les verres ternaires : fugacité

$Na_2O-CaO-3SiO_2$, T = 1200°C

Na₂O-CaO-SiO₂ : spéciation du chrome confirmée par spectro.

Chrome dans les verres ternaires : fugacité & température

Étain dans les verres ternaires

Conclusions

Solubilité de céramiques à cations multivalents : fonction de la basicité, de la température et de la fugacité en oxygène

L'élément chrome :

- Spéciation du chrome dans les verres NxS et NCxS
- État oxydé stabilisé dans les milieux basiques
- État réduit stabilisé dans les milieux acides

✓ Déplacement de l'équilibre de dissolution de Cr_2O_3 en fonction de $f(O_2)$, le modèle confirme le couple O_2/O^{2-} et permet de déterminer les rapports rédox

L' élément étain :

- ✓ Dissolution de SnO₂ activée thermiquement selon une loi d' Arrhenius
- ✓ Diminution de la solubilité de SnO₂ avec BO : réduction de Sn^{IV}

Merci de votre attention

 H. Khedim, T.K. Abdullah, S. Abdelouhab, P. Gateau, J. Ravaux, O. Rouer, S. Mathieu, P. Martin,
 D. Testemale, D. Neuville, R. Podor, P. Steinmetz, C. Petitjean, P.J. Panteix, C. Rapin, M. Vilasi,

Chrome dans les verres ternaires

$$Na_2O-B_2O_3-4SiO_2$$
, T = 1200°C

Na₂O-B₂O₃-SiO₂ spéciation du chrome B₂O₃ semble stabiliser l'état réduit

Chrome dans les verres ternaires

$$Na_{2}O-CaO-4SiO_{2}, T = 1200^{\circ}C$$

Na₂O-CaO-SiO₂ spéciation du chrome

Le rédox : du liquide aux verres et jusqu'aux cristaux – 21 & 22 mars 2013

- ✤ Compromosing equilibrium time = 4h 24h
- Shorter heat treatment is favored (t = 4h) since there is significant loss of Na at longer run duration

