

Thursday, 2 May 2024, Lloret del Mar, Spain

Refining techniques and developments

Franck Pigeonneau Mines Paris | PSL Univ. - Centre of Materials Forming, CNRS UMR 7635, Sophia Antipolis, France

2. Mass transfer around a bubble

3. Fining process

- 3.1 Sulphate fining
- 3.2 Water fining
- 3.3 Helium fining
- 3.4 Centrifugal and low pressure fining

4. Synthesis

Glass bath is an open reactor system.

Existence of a residence time distribution E(t).

Arbitrary reactor

 $E(t) \sim$ probability density function:

$$\int_{0}^{\infty} E(t)dt = 1, \qquad (1)$$
$$\langle t \rangle = \int_{0}^{\infty} tE(t)dt. \qquad (2)$$

- Glass bath is an open reactor system.
- Existence of a residence time distribution E(t).

 $\delta(t-t_s). \qquad (3)$

 $E(t) \sim$ probability density function:

$$\int_{0}^{\infty} E(t)dt = 1, \qquad (1) \qquad E(t) =$$
$$\langle t \rangle = \int_{0}^{\infty} t E(t)dt. \qquad (2)$$

- Glass bath is an open reactor system.
- Existence of a residence time distribution E(t).

Continuous Stirred Tank Reactor

 $E(t) \sim$ probability density function:

$$\int_{0}^{\infty} E(t)dt = 1, \qquad (1)$$
$$\langle t \rangle = \int_{0}^{\infty} tE(t)dt. \qquad (2)$$

$$E(t) = \delta(t - t_s).$$
 (3) $E(t) = \frac{e^{-t/t_s}}{t_s}.$ (4)

- Glass bath is an open reactor system.
- Existence of a residence time distribution E(t).

 t_s is useful to normalise t and E(t)

$$\bar{t} = \frac{t}{t_s}, \ \bar{E}(\bar{t}) = t_s E(t).$$
 (6)

MINES DAD

Figure 1: Residence time distribution of PFR, CSTR and industrial glass furnace. $\ensuremath{\texttt{PSL}\xspace}$ | Cemef

Figure 2: Bubble population in borosilicate liquid from post-mortem analysis¹.

¹L. Pereira et al.: Experimental study of bubble formation in a glass-forming liquid doped with cerium oxide, in: J. Am. Ceram. Soc. 103 (2020), pp. 2453–2462.

Figure 3: $\mu_0 = N(t)$ vs. t for T=1320, 1370 and 1420 °C². Solid circles from Bastick³. $N(t) = N_0 e^{-\alpha t}, N_0 \approx 10^8 \text{ m}^{-3}.$ (7)

²F. Pigeonneau/L. Pereira/A. Laplace: Dynamics of rising bubble population undergoing mass transfer and coalescence in highly viscous liquid, in: Chem. Eng. J. 455.2 (2023), p. 140920.
³R. E. Bastick: Laboratory experiments on the refining of glass, in: Symposium sur l'affinage du verre, Paris 1956, pp. 127–138.

In close reactor, degree of conversion:

$$X_{CR}(t) = 1 - \frac{N(t)}{N_0} = 1 - e^{-\alpha t}.$$
 (8)

7

▶ In open reactor, the degree of conversion is given by⁴:

$$X_{OR} = \int_0^\infty X_{CR}(t) E(t) dt = 1 - G(\alpha),$$
(9)
$$G(\alpha) = \int_0^\infty E(t) e^{-\alpha t} dt, \text{ Laplace transformation.}$$
(10)

⁴J. Villermaux: Génie de la réaction chimique, Paris 1993.

Flat glass: less than 1 bubble of $200 \,\mu\text{m}/20 \,\text{m}^2 \implies 10 \text{ bubbles/m}^3$:

$$G(\alpha) = 1 - X_{OR}(\alpha) = 10^{-7}.$$
 (11)

▶ Container glass: less than 1 bubble/bottle \rightarrow 10⁴ bubbles/m³:

$$G(\alpha) = 1 - X_{OR}(\alpha) = 10^{-4}.$$
 (12)

• According to Bastick⁵, for T=1350 °C:

$$\alpha \approx 5 \cdot 10^{-4} \text{ s}^{-1}. \tag{13}$$

⁵Bastick: Laboratory experiments on the refining of glass (see n. 3).

PSL 🐮 | Cemef

MINES DADI

Figure 4: $G(\alpha) = 1 - X(\alpha)$ vs. αt_s for PFR, CSTR and industrial glass furnace.

According to Pereira et al.⁶:

$$\alpha \sim \frac{\rho g a^2}{\eta(T) H}$$

 $^{^{6}\}mbox{Pereira et al.:}$ Experimental study of bubble formation in a glass-forming liquid doped with cerium oxide (see n. 1).

⁶G. E. Kunkle/W. M. Welton/R. L. Schwenninger: Melting and vacuum refining of glass or the like and composition of sheet, US Patent 4,738,938, PPG Industries, Inc., 1988.

⁶J. Ferguson: Centrifugal glass-melting furnace, US Patent 2,006,947, 1930.

⁶P. Jeanvoine et al.: Procédé et dispositif de fusion et d'affinage de matières vitrifiables, Eur. Patent 0 970 021 B1, Saint-Gobain Glass France, 2005.

2. Mass transfer around a bubble

3. Fining process

- 3.1 Sulphate fining
- 3.2 Water fining
- 3.3 Helium fining
- 3.4 Centrifugal and low pressure fining

4. Synthesis

Figure 5: $Eo - Re diagram^7$.

⁷R. Clift/J. R. Grace/M. E. Weber: Bubbles, Drops, and Particles, New York 1978.

$$Eo = Bo = \frac{\rho g D^2}{\gamma} < 40$$
$$Re = \frac{\rho U D}{\eta} < 1$$
$$Mo = \frac{g \eta^4}{\rho \gamma^2} \approx 3 \times 10^2$$

Figure 5: $Eo - Re diagram^7$.

⁷Clift/Grace/Weber: Bubbles, Drops, and Particles (see n. 7).

Figure 6: Drag law in glass forming liquids.

⁸R. B. Jucha et al.: Bubble rise in glassmelts, in: J. Am. Ceram. Soc. 65 (1982), pp. 289–292.
⁹E. J. Hornyak/M. C. Weinberg: Velocity of a freely rising gas bubble in a soda-lime silicate glass melt, in: J. Am. Ceram. Soc. 67 (1984), pp. C244–C246.

(b)

Figure 7: Film drainage at a free surface of high viscous liquids¹⁰: (a) expe. setup, (b) \overline{h} vs. \overline{t} .

¹⁰H. Kočárková/F. Rouyer/F. Pigeonneau: Film drainage of viscous liquid on top of bare bubble: Influence of the Bond number, in: Phys. Fluids 25 (2013), p. 022105.

Figure 8: Stream functions inside and outside of a rising bubble.

According to Hadamard^a & Rybczynski^b:

$$\mathbf{F} = -4\pi\eta a (\mathbf{V} - \mathbf{U}),$$
 (14)
 $\mathbf{V} = -rac{
ho \mathbf{g} a^2}{3\eta}.$ (15)

^aJ. Hadamard: Mouvement permanent lent d'une sphére liquide et visqueuse dans un liquide visqueux, in: C. R. Acad. Sci. Paris 152 (1911), pp. 1735–1738.

^bW. Rybczynski: Uber die fortschreitende bewegun einer flussingen kugel in einem zaben medium, in: Bull. de l'Acad. des Sci. de Cracovie, série A 1 (1911), pp. 40–46.

$$\frac{dn_i}{dt} = \int_S \mathcal{D}_i \nabla C_i \cdot \mathbf{n} dS = 4\pi a^2 \mathbf{J}_i, \quad (16)$$
$$\left[P_0 + \rho(H - z) + \frac{2\gamma}{a} \right] \frac{4\pi a^3}{3} = \left(\sum_{i=1}^N n_i \right) \mathcal{R} \mathcal{T}, \quad (17)$$
$$\frac{d\mathbf{x}}{dt} = \mathbf{u} - \frac{\rho \mathbf{g} a^2}{3\eta}. \quad (18)$$

▶ Without convection and in steady-state regime:

$$\frac{d}{dr}\left(r^{2}\frac{dC_{i}}{dr}\right) = 0,$$

$$C_{i}(r) = C_{i}^{\infty} - \frac{(C_{i}^{\infty} - C_{i}^{s})a}{r},$$

$$J_{i} = \frac{\mathcal{D}_{i}(C_{i}^{\infty} - C_{i}^{s})}{a}.$$
(19)
(20)
(21)

In the case of a rising bubble, the problem is normalised:

$$\bar{\mathbf{x}} = \frac{\mathbf{x}}{2a}, \ \bar{C}_i = \frac{C_i - C_i^{\infty}}{C_i^s - C_i^{\infty}}.$$
(22)

In steady-state and in spherical coordinate system:

$$\begin{bmatrix} \bar{u}_{r} \frac{\partial \bar{C}_{i}}{\partial \bar{r}} + \frac{\bar{u}_{\theta}}{\bar{r}} \frac{\partial \bar{C}_{i}}{\partial \theta} \end{bmatrix} = \frac{1}{\operatorname{Pe}_{i} \bar{r}^{2}} \begin{bmatrix} \frac{\partial}{\partial \bar{r}} \left(\bar{r}^{2} \frac{\partial \bar{C}_{i}}{\partial \bar{r}} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \bar{C}_{i}}{\partial \theta} \right) \end{bmatrix}, \quad (23)$$
$$\operatorname{Pe}_{i} = \frac{V_{T} 2a}{\mathcal{D}_{i}}. \quad (24)$$

Figure 10: Re & Pe vs. *a* (m).

(b) Stretched coordinate^a: $r = [1 + \delta(\text{Pe}_i)\zeta]/2$

^aE. J. Hinch: Perturbation Methods, 1991.

Figure 11: Chemical boundary layer around a rising bubble.

$$\left(\frac{\bar{u}_r}{\delta}\frac{\partial\bar{C}_i}{\partial\zeta} + \frac{\bar{u}_\theta}{1+\delta\zeta}\frac{\partial\bar{C}_i}{\partial\theta}\right) = \frac{1}{2\operatorname{Pe}_i\delta^2(1+\delta\zeta)^2}\left\{\frac{\partial}{\partial\zeta}\left[(1+\delta\zeta)^2\frac{\partial\bar{C}_i}{\partial\zeta}\right] + \frac{4\delta^2}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\bar{C}_i}{\partial\theta}\right)\right\} (25)$$

$$\frac{\bar{u}_r}{\delta} = -\frac{\cos\theta}{2} \left[\frac{2\zeta}{1+\hat{\eta}} + \frac{3\hat{\eta}-2}{2(1+\hat{\eta})} \delta\zeta^2 + \mathcal{O}(\delta^2) \right],\tag{26}$$

$$\frac{\bar{u}_{\theta}}{1+\delta\zeta} = -\frac{\sin\theta}{4} \left[-\frac{2}{1+\hat{\eta}} - \frac{4+10\hat{\eta}}{1+\hat{\eta}}\delta\zeta + \frac{6+19\hat{\eta}}{1+\hat{\eta}}\delta^2\zeta^2 + \mathcal{O}(\delta^3) \right].$$
(27)

From the *principle of least degeneracy*¹¹: For solid particle or immobile interface \Rightarrow For bubble $\Rightarrow \hat{\eta} \rightarrow 0$: $\hat{\eta} \to \infty$: $\delta \propto 1/\sqrt{\mathrm{Pe}_i}$. (29)

$$\delta \propto 1/\sqrt[3]{\mathrm{Pe}_i}.$$
 (28)

¹¹M. Van Dyke: Perturbation methods in fluid mechanics, Stanford, California 1975.

The molar flux becomes:

$$\frac{dn_i}{dt} = 4\pi a^2 J_i, \tag{30}$$

$$J_{i} = \frac{(C_{i}^{s} - C_{i}^{\infty})\mathcal{D}_{i}}{2a} \operatorname{Sh}_{i}, \text{ without motion } \operatorname{Sh}_{i} = 2.$$
(31)
$$\operatorname{Sh}_{i} = \frac{2a}{\pi\delta} \int_{S} \frac{\partial \bar{C}}{\partial n} dS, \text{ Sherwood number.}$$
(32)

Levich's solution¹²:

$$Sh_i = 0.991\sqrt[3]{Pe_i}.$$
 (33) $Sh_i = 0.651\sqrt{Pe_i}.$ (34)

¹²V. G. Levich: Physicochemical hydrodynamics, Englewood Cliffs, N.J. 1962.

Figure 12: Sh vs. Pe for solid particle and bubble¹³.

¹³Clift/Grace/Weber: Bubbles, Drops, and Particles (see n. 7).

PSL 🕷 🛛 Cemef

MINES DAD

Figure 13: *a* vs. *t* of O₂ bubble at T=1400 °C, $C_{\rm Fe}=2.8 \times 10^{-2}$ wt%, $\mathcal{R}_{\rm Fe}=0.575$.

Solve the advection/diffusion/reaction equation:

$$\frac{DC_{O_2}}{Dt} = \mathcal{D}_{O_2} \nabla^2 C_{O_2} + \dot{r}_{O_2}.$$
(35)

Assumptions:

- The flow around the bubble is in the Stokes regime.
- Interface between the bubble and glass is fully mobile.
- Oxidation-reduction reaction of iron oxide is in chemical equilibrium¹⁴.
- Diffusion of iron is assumed very low.

$$\dot{r}_{\rm O_2} = -\frac{C_{\rm Fe}K_{\rm Fe}}{16C_{\rm O_2}^{3/4}(K_{\rm Fe} + C_{\rm O_2}^{1/4})^2} \frac{DC_{\rm O_2}}{Dt}.$$
(36)

¹⁴R. G. C. Beerkens/H. de Waal: Mechanism of oxygen diffusion in glassmelts containing variable-valence ions, in: J. Am. Ceram. Soc. 73 (1990), pp. 1857–1861; F. Pigeonneau: Mass transfer of a rising bubble in molten glass with instantaneous oxidation-reduction reaction, in: Chem. Eng. Sci. 64.13 (2009), pp. 3120–3129.

Figure 14: Sh vs. Pe for O_2^{15} .

¹⁵F. Pigeonneau/L. Pereira/A. Laplace: Mass transfer around a rising bubble in a glass-forming liquid involving oxidation-reduction reaction: Numerical computation of the Sherwood number, in: Chem. Eng. Sci. 232 (2021), p. 116382.

PSL X Cemef

MINES DAD

Figure 15: *a* vs. *t* of O₂ bubble at T=1400 °C, $C_{\rm Fe}=2.8 \times 10^{-2}$ wt%, $\mathcal{R}_{\rm Fe}=0.575$.

2. Mass transfer around a bubble

3. Fining process

- 3.1 Sulphate fining
- 3.2 Water fining
- 3.3 Helium fining
- 3.4 Centrifugal and low pressure fining

4. Synthesis

$$\frac{dn_i}{dt} = 2\pi a \mathcal{D}_i \operatorname{Sh}_i \left(C_i^{\infty} - \mathcal{L}_i P_i^{\beta_i} \right), \qquad (37)$$

$$\left[P_0 + \rho(H - z) + \frac{2\gamma}{a}\right] \frac{4\pi a^3}{3} = \left(\sum_{i=1}^N n_i\right) \mathcal{R}T,$$

$$\frac{d\mathbf{x}}{dt} = \mathbf{u} - \frac{\rho \mathbf{g} a^2}{3\eta}.$$
(38)

$$\frac{dn_i}{dt} = 2\pi a \mathcal{D}_i \operatorname{Sh}_i \left(\frac{C_i^{\infty} - \mathcal{L}_i P_i^{\beta_i}}{dt} \right),$$
(37)

$$\left[P_{0} + \rho(H - z) + \frac{2\gamma}{a}\right] \frac{4\pi a^{3}}{3} = \left(\sum_{i=1}^{N} n_{i}\right) \mathcal{R}T, \qquad (38)$$
$$\frac{d\mathbf{x}}{dt} = \mathbf{u} - \frac{\rho \mathbf{g} a^{2}}{3\eta}. \qquad (39)$$

Multivalent elements oxidation-reduction state described by

$$M^{(m+k)+}(l) + \frac{k}{2}O^{2-}(l) \longleftrightarrow M^{m+}(l) + \frac{k}{4}O_2(g),$$
 (40)

$$\mathrm{SO}_4^{2+}(I) \longleftrightarrow \mathrm{SO}_2(g) + \frac{1}{2}\mathrm{O}_2(g) + \mathrm{O}^{2-}(I).$$
 (41)

Equilibrium with a gaseous atmosphere is given by

$$O_2(g) \longleftrightarrow O_2(l).$$
 (42)

Figure 16: (a) Ion concentrations and (b) redox state $C_{\rm Fe^{2+}}/C_{\rm Fe}$ without and with thermodynamic equilibrium of gaseous phase.

PSL 🕷 🛛 Cemef

3.1 Sulphate fining

Figure 17: Bubble histogram vs. 2a [SGR, Paris, N. McDonald].

Model coupling mass transfer between bubble and the liquid¹⁶:

$$\frac{dC_{A_{i}}}{dt} = \sum_{r=1}^{R} \nu_{ri} \frac{d\zeta_{r}}{dt}, \ i \in [1, N_{I}]. \ (43) \qquad \qquad S_{b,G_{j}} = -4\pi \sum_{k=1}^{N_{cl}} a_{k}^{2} k_{G_{j},k} \left(C_{G_{j}} - \mathcal{L}_{G_{j}} P_{G_{j},k}^{\alpha_{G_{j}}}\right) N_{b,k}, \ (46) \\ \frac{dC_{G_{j}}}{dt} = \sum_{r=1}^{R} \beta_{rj} \frac{d\zeta_{r}}{dt} + S_{b,G_{j}}, \ j \in [1, N_{fg}], \ (44) \qquad \qquad \sum_{k=1}^{R} M_{rk} \frac{d\zeta_{k}}{dt} = \frac{d \ln K_{r}}{dT} \frac{dT}{dt} - \sum_{j=1}^{N_{cl}} \frac{\beta_{rj}}{C_{G_{j}}} S_{b,G_{j}}, \ r \in [1; R], \ (47) \\ \frac{dC_{G_{j}}}{dt} = S_{b,G_{j}}, \ j \in [N_{fg} + 1; N_{g}]. \ (45) \qquad \qquad M_{rk} = \sum_{i=1}^{N_{l}} \frac{\nu_{ri}\nu_{ki}}{C_{A_{i}}} + \sum_{j=1}^{N_{fg}} \frac{\beta_{rj}\beta_{kj}}{C_{G_{j}}}. \ (48)$$

¹⁶J. Kloužek et al.: The redox distribution at the interface of glass melts with different oxidation state, in: Ceram. Silik. 44 (2000), pp. 91–95; F. Pigeonneau: Coupled modelling of redox reactions and glass melt fining processes, in: Glass Technol.: Eur. J. Glass Sci. Technol. A 48.2 (2007), pp. 66–72.

Figure 18: Amount of H₂O vs. x_{H_2O} with a solubility equal to $0.68e^{-613/T}$ at $P=10^5$ Pa according Beerkens¹⁷.

¹⁷R. G. C. Beerkens: Analysis of advanced and fast fining processes for glass melts, in: Advances in Fusion and Processing of Glass III, New York 2004, pp. 3–24.

Figure 19: a vs. t with $a(0)=10^2 \mu m$ and $T=1400 \circ C$.

Patent proposed by Lazet¹⁸.

Class	Ini. compo. ini.	$N_{b}~({ m m}^{-3})$	<i>a</i> 0 (mm)
1	CO ₂	$2.25 imes10^4$	0.1
2	CO_2	$2.25 imes10^4$	0.25
3	CO_2	$2.25 imes10^4$	0.75
4	CO_2	$2.25 imes10^4$	1
5	H_2O	10 ⁵	10

Table 1: Composition, volume concentration and initial radii of bubble classes.

¹⁸F. J. Lazet: Preparing alkali metal silicate glass with bubbles, US Patent 3,960,532 A, Philadelphia Quartz Company, 1975.

Figure 20: *a* vs. *t* for the 5 classes of bubbles at T=1200 °C.

MINES PARIS

Figure 21: Molar concentration of dissolved gas in the liquid vs. t at T=1200 °C. PSL® | Genef

3. Fining process 3.3 Helium fining

- Patent proposed by Kobayashi et al.¹⁹.
- ► He bubbling ➤ diffusion of He in the liquid ➤ migration of He in bubbles produced by the melting.
- ▶ Test with two populations of bubbles, one from melting with 10^8 m^{-3} and one due to the bubbling of He with 10^7 m^{-3} at $T=1400 \circ \text{C}$.
- Initial radius equal to 100 μm.

¹⁹H. Kobayashi/S. E. Jaynes/R. G. C. Beerkens: Process of fining glassmelts using helium bubbles, US Patent 2006/0174655A1, Praxair, Inc., 2003.

3.3 Helium fining

Figure 22: *a* vs. *t* for the 2 classes of bubbles at T=1400 °C.

3.3 Helium fining

MINES PARIS

Figure 23: Molar concentration of He dissolved in the liquid vs. t at T=1400 °C.

3.4 Centrifugal and low pressure fining

Figure 24: Centrifugal finer according to Spinosa²⁰.

²⁰E. D. Spinosa: Modular refining methods, in: Am. Ceram. Soc. Bull. 83.10 (2004), pp. 25–27.

3.4 Centrifugal and low pressure fining

Tonarová et al.²¹ provided an optimisation of the centrifugal fining.

$$P = P_0 + \rho g \left(H - \frac{\omega^2 R^2}{4g} - z \right) + \rho \frac{\omega^2 r^2}{2}.$$
(49)

²¹V. Tonarová/L. Němec/J. Kloužek: The optimal parameters of bubble centrifuging in glass melts, in: J. Non-Cryst. Solids 357 (2011), pp. 3785–3790.

3.4 Centrifugal and low pressure fining

Figure 25: Fining time vs. ω according to Tonarová et al.²².

²²Tonarová/Němec/Kloužek: The optimal parameters of bubble centrifuging in glass melts (see n. 21).

3.4 Centrifugal and low pressure fining

Figure 26: *a* vs. *t* for various ω for 3 atmospheric pressure.

3.4 Centrifugal and low pressure fining

Figure 27: Fining time vs. ω for 3 atmospheric pressure.

4. Synthesis

Method	Structure	Installation	Operation	Development
Helium	Small	Familiar to industry	Complicated	Laboratory
Sonic	Small	Familiar to industry	Simple	Laboratory
Centrifugal	Large	Unfamiliar to industry	Extremely challenging	Pilot scale
Vacuum	Large	Unfamiliar to industry	Challenging	Commercial

Table 2: Comparison of refining methods²³.

²³Spinosa: Modular refining methods (see n. 20).

4. Synthesis

Figure 28: Segmented melter RAMAR of Owens-Illinois^a.

^aF. G. Pellett et al.: Method for rapid melting and refining glass, US Patent 3,819,350, 1974.

Thank you all of you for your attention!

Students:

H. Kočárková, M. Perrodin, M. Guémas, D. Boloré, L. Pereira.

Colleagues:

- SGR, Paris: M.-H. Chopinet, E. Gouillart, D. Martin, N. McDonald;
- Lab. Navier (Univ. Paris-Est/Marne la Vallée): F. Rouyer;
- Lab. Génie Chim. (Toulouse): P. Chamelot, O. Masbernat;
- ▶ I.M.F.T. (Toulouse): E. Climent;
- LadHyX (Ecole Polytechnique, Paris Saclay): A. Sellier;
- CEA Marcoule: A. Laplace;
- Lab. Inorg. Mater., Univ. of Prague (Czech Republic): J. Kloužek.

Contact:

franck.pigeonneau@minesparis.psl.eu

