

Mesures de Coefficients de Diffusion par Résonance Magnétique Nucléaire

Vincent Sarou-Kanian

Atelier diffusion dans les oxydes amorphes solides et liquides 13 Septembre 2018, Orléans

Résonance Magnétique Nucléaire

- →Matériaux liquides et solides / ordonnés ou désordonnés
- \rightarrow Structure locale à l'échelle atomique (Å-nm)
- \rightarrow La dynamique (Å-mm)
- → Imagerie (IRM)
- +Non invasive
- +Non destructive
- +Sélectivité isotopique
- +Volumique
- -Peu sensible (mMol)
- -Echantillon généralement diamagnétique (~ métaux de transition)

Dynamique par RMN

- Relaxométrie (mesures des temps de relaxation RMN T_1 , T_2 , T_{10})
 - Sonde les échelles de temps caractéristiques des mouvements atomiques, moléculaires (intra/inter)

• Expérience d'échange

- Sonde le changement d'environnement structural d'atomes entre deux instants
- Mesures du coefficient d'auto-diffusion
 - Sonde la dynamique translationnelle des atomes/molécules

... et bien d'autres

Expérience de diffusion par RMN

Préparation	Encodage spatial	Evolution - diffusion	Décodage spatial	Acquisition	Temps
-------------	---------------------	--------------------------	---------------------	-------------	-------

Impulsions radiofréquences : manipulation de l'aimantation Impulsion de champ gradient : encodage spatial de l'aimantation

Un exemple de séquence RMN pour la mesure du coefficient de diffusion

Obtention du coefficient de diffusion D

L'expression analytique de l'atténuation de l'écho $S(2\tau)$ est telle que:

d'un facteur 10

$$S(2\tau) = S(0) \cdot \exp(-2\tau/T_2) \cdot \exp(-\gamma^2 D g^2 \delta^2 (\Delta - \delta/3))$$

Importance de l'intensité du gradient g

Importance de y

Noyaux observables en diffusion RMN

• Group	Ι	Π		IIIa	IVa	Va	VIa	VIIa	VIIIa	VIIIb	VIIIc	IB	IIB	ш	IV	V	VI	VII	VIII
Period		-																	
1	1 <u>H</u>																		2 <u>He</u>
2	3 <u>Li</u>	4 <u>Be</u>												5 B	6 <u>C</u>	7 N	8 <u>0</u>	9 <u>F</u>	10 <u>Ne</u>
3	II <u>Na</u>	12 <u>Mg</u>					121	17						13 <u>Al</u>	14 <u>Si</u>	(15 <u>P</u>	16 <u>S</u>	17 <u>Cl</u>	18 Ar
4	19 <u>K</u>	20 <u>Ca</u>		21 <u>Sc</u>	22 <u>Ti</u>	23 <u>V</u>	24 <u>Cr</u>	25 <u>Mn</u>	26 <u>Fe</u>	27 <u>Co</u>	28 <u>Ni</u>	29 <u>Cu</u>	30 <u>Zn</u>	31 <u>Ga</u>	32 <u>Ge</u>	33 <u>As</u>	34 <u>Se</u>	35 <u>Br</u>	36 <u>Kr</u>
5	37 <u>Rb</u>	38 <u>Sr</u>		39 <u>Y</u>	40 <u>Zr</u>	41 <u>Nb</u>	42 <u>Mo</u>	43 Tc	44 <u>Ru</u>	45 <u>Rh</u>	46 Pd	47 <u>Ag</u>	48 <u>Cd</u>	49 <u>In</u>	50 <u>Sn</u>	51 <u>Sb</u>	52 <u>Te</u>	53 <u>I</u>	54 <u>Xe</u>
6	55 <u>Cs</u>	56 <u>Ba</u>	*	71 <u>Lu</u>	72 <u>Hf</u>	73 <u>Ta</u>	74 <u>W</u>	75 <u>Re</u>	76 <u>Os</u>	77 <u>Ir</u>	78 <u>Pt</u>	79 <u>Au</u>	80 Hg	81 <u>T</u>	82 <u>Pb</u>	83 <u>Bi</u>	84 Po	85 At	86 Rn
7	87 Fr	<mark>88</mark> Ra	**	103 Lr	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Mt	110 Uun	111 Uuu	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
*Lant	thanide	s	*	57 <u>La</u>	58 Ce	59 <u>Pr</u>	60 <u>Nd</u>	61 Pm	62 <u>Sm</u>	63 <u>Eu</u>	64 <u>Gd</u>	65 <u>Tb</u>	66 Dy	67 <u>Ho</u>	68 <u>Er</u>	69 <u>Tm</u>	70 <u>Yb</u>		11
**Ac	tinides	ŀ	**	89 Ac	90 Th	91 Pa	92 <u>U</u>	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Nuclear Spins 1/2 1 3/2 5/2 7/2 9/2

RMN Haute Température

Lacassagne et al., J. Phys. Chem. B, 106, 1862, (2002)

High temperature diffusion NMR: probes @ CEMHTI

Bruker probe (diff-5) modified in CEMHTI (with Bruker) z-gradients: up to 55 G/cm 2 RF channels:

- ${}^{1}H$ - ${}^{19}F$ $\Rightarrow D$ range: 10⁻¹⁰ to 10⁻⁸ m²/s

- X Broad band (¹⁷O - ³¹P)

 $I = I_0 exp \left[-D(\gamma g \delta)^2 \left(\Delta + \frac{2\delta}{3} + \frac{3\tau}{4} \right) \right]$ Low *D* and/or Low γ nuclei and/or Short delays (relaxation) \Rightarrow Higher gradients

Bruker probe (diff-30/50) modified in CEMHTI z-gradients: up to 2400 G/cm RF inserts ¹H, ⁷Li, ¹⁷O, ¹⁹F, ²³Na - ²⁷Al ⇔*D* range

 $\Rightarrow D$ range: 10⁻¹² to 10⁻⁸ m²/s

Molten fluorides: cryolitic melts

Molten fluorides: used in various technologies (pyroprocessing, electrolysis, fluxing...) to dissolve oxides.

Particular chemistry: can contain free, complexed or connected ions. Speciation and acidity need better understanding

> **Aluminium production**: alumina (Al₂O₃) dissolved in cryolite(Na₃AlF₆)based bath and reduced by electrolysis at T~1000° C

Bath = $Al_2O_3 + Na_3AlF_6$ + fluorides additives •Free ions: F⁻, Na⁺ •Al complexes : AlF_4^{-} , AlF_5^{2-} , AlF_6^{3-} , $Al_2O_2F_4^{2-}$

Self-diffusion in NaF-AlF3

Na: D_{Na} follows the phase diagram. The diffusion of Na is mainly affected by T

Monoatomic cations diffusing "freely"
 Al: D_{AI} is much lower than D_{Na}. Al is involved in larger entities
 AlF_n³⁻ⁿ anionic units

F: $D_F = x_{F^-} \cdot D_{F^-} + x_{AIFn^{3-n}} \cdot D_{AIFn^{3-n}}$ $D_F \sim D_{Na}$ at low [AIF₃] then converges towards D_{AI} \Rightarrow The content of F⁻ decreases with [AIF₃]

Lacassagne et al., J. Phys. Chem. B 2002, 106, 1862

Oxides: Li diffusion in lithium borates

 $x \text{Li}_2 \text{O} - (1 - x) \text{B}_2 \text{O}_3$

 \rightarrow ionic conducting glasses

Our study: 7 crushed glass samples

x=0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50

Molten state 850° $C \le T \le 1000^{\circ}$ CGlasses around Tg 450° $C \le T \le 600^{\circ}$ C

Collaboration with **T. Ohkubo, M. Nozawa & Y. Iwadate** Graduate School of Engineering, Chiba University, Japan

Chiba University

Li diffusion in molten state as a function of temperature

T.Ohkubo, M.Gobet, V.Sarou-Kanian, C.Bessada, M.Nozawa, Y.Iwadate Chem. Phys. Lett. 2012, 530, 61

Activation energy in Li₂O-B₂O₃ melts

Non-monotonous trend for *Ea*: minimum for $x \approx 0.4$

Boron speciation in glasses MAS ¹¹B NMR: BO_4^- fraction

Diffusion vs. structure

Sample is a powder: distribution of orientations

Cylindrical symmetry

 $\Rightarrow D$ along the axis $(D_{par}) \neq D$ within the plan (D_{perp})

$$\langle z^2(\Delta) \rangle = 2D_{\text{par}}(\Delta)\Delta \cos^2 \Theta + 2D_{\text{perp}}(\Delta)\Delta \sin^2 \Theta$$

$$\Psi(\delta g, \Delta) = \frac{1}{2} \int_0^{\pi} \exp\{-(\gamma \delta g)^2 \Delta (D_{\text{par}} \cos^2 \Theta + D_{\text{perp}} \sin^2 \Theta)\} \sin \Theta \, d\Theta$$

From XRD: 90% Li₃N - 10% of Li₂O T = 431°C $D_{ab} = 3.0.10^{-10} \text{m}^2/\text{s}$ $D_c = 0$ Non-diffusing part: $\Psi_0 = 12\%$ OR $D = 2.0.10^{-10} \text{m}^2/\text{s}$ $\Psi_0 = 20\%$

Z.Wang, M.Gobet, V.Sarou-Kanian, D.Massiot, C.Bessada, M.Deschamps *Phys. Chem. Chem. Phys.* **14**, 13535-13538 2012

Anisotropic diffusion in lithium nitride

Z.Wang, M.Gobet, V.Sarou-Kanian, D.Massiot, C.Bessada, M.Deschamps *Phys. Chem. Chem. Phys.* **14**, 13535-13538 2012

K. Nishida, T. Asai and S. Kawai Solid State Commun. **48** 701-704 (1983)

N	Measured	by PFG-NMR	τ	$xY = \frac{(x^2) + (y^2)}{4D_{XY}}$	2)	Calculated from (1)
	T (K)	$D_{XY} (x \ 10^{-10})$		τ_{XY} (ps)		τ_Z (ps)
_		m²/s)	1			
	534	1.438		78		20828
	560	1.522		73		10685
	587	1.770		63		5880
	612	1.779		63		3434
	637	2.457		46		2112
	637	2.079		54		2112
	662	2.638		42		1358
	680	2.587		43		1001
	704	3.042		37		687
	728	3.195		35		486
	751	3.433		33		354
	774	3.682		30		264

(1) NMR on monocristal / SAE sensitive to change in H_Q: E_a = 0,65 eV pour D_c
M. Wilkening, D. Gebauer and P. Heitjans
J. Phys. Cond. Mat. 20 022201 (2008)

(2) Calculations: E_a = 0.0065 eV for defect migration
W. Li, G. Wu, C. M. Araujo, R. H. Scheicher et al. *Energy & Environmental Science* 3, 1524-1530 (2010)
-> measure the activation energy for the creation of defects

$\text{Li}_{10}\text{GeP}_2\text{S}_{12}$ from RT to 414°C

Kuhn, A.; Duppel, V.; Lotsch, B. V. *Energy Environ. Sci.* 2013, 6 (12), 3548–5. Anisotropic diffusion **not detected Averaging of quadrupolar interaction** Presence of **orthorhombic modification** of LGPS Observed by ³¹P NMR Size of crystallite vs diffusion delay Evolution of the sample ?

$Li_{10}GeP_2S_{12}$: comparison with MD and calculations

Conclusions

- Mesure des coefficients d'auto-diffusion
- Multi nucléaire \rightarrow structure
- Isotropie /anisotropie
- $\downarrow 10^{-12,13} \text{ m}^2/\text{s}$

Translational Dynamics & Magnetic Resonance Principles of Pulsed Gradient Spin Echo NMR

