RMN premiers principes appliquée à l'étude des verres de phosphates

Filipe Vasconcelos

Radboud University Nijmegen, Electronic Structure of Materials

École thématique GDR-Verres Marcoule - Mai 2011

Radboud University Nijmegen

Filipe Vasconcelos

Outline

Introduction

General context Some elements of the methodology

NMR First Principles applied to Glass

- × Motivations
- X How to generate glass configurations?
- Case study : Sodium metaphosphate glass (NaPO₃)
 - NMR results (spectra, correlations, ...)
 - EFG distributions
 - Extended Czjzek Model

NMR parameters and structure

- X Potential energy landscape (PEL) in glass science.
- × NMR parameters revealing the PEL

General Conclusions

Outline

Introduction

General context Some elements of the methodology

NMR First Principles applied to Glass

- × Motivations
- X How to generate glass configurations?
- X Case study : Sodium metaphosphate glass (NaPO₃)
 - NMR results (spectra, correlations, ...)
 - EFG distributions
 - Extended Czjzek Model

NMR parameters and structure

- X Potential energy landscape (PEL) in glass science.
- × NMR parameters revealing the PEL

General Conclusions

General context

General context

NMR : **X** Better resolution \rightarrow more information

Solid-State Nuclear Magnetic Resonance (SSNMR)

Interaction	Name	Tensor	Parameters
CS	Chemical Shift	CSA	$\delta_{iso}, \Delta_{CS}, \eta_{CS}$
Q	Quadrupolar	EFG	C_Q, η_Q
D	Dipolar coupling	D	r
J	Indirect spin-spin coupling	J	J _{iso}

Solid-State Nuclear Magnetic Resonance (SSNMR)

Interaction	Name	Tensor	Parameters
CS	Chemical Shift	CSA	$\delta_{iso}, \Delta_{CS}, \eta_{CS}$
Q	Quadrupolar	EFG	C_Q, η_Q
D	Dipolar coupling	D	r
J	Indirect spin-spin coupling	J	J _{iso}

Solid-State Nuclear Magnetic Resonance (SSNMR)

Interaction	Name	Tensor	Parameters
CS	Chemical Shift	CSA	$\delta_{iso}, \Delta_{CS}, \eta_{CS}$
Q	Quadrupolar	EFG	C_Q, η_Q
D	Dipolar coupling	D	r
J	Indirect spin-spin coupling	J	J _{iso}

Filipe Vasconcelos

Overview of ¹⁷O

Properties

- X Predominant nucleus in oxides based glasses
- X Two different role in the structure (BO , NBO)
- × Wide chemical shift range
- X Low natural abundance (0.037%)
- × Quadrupolar interaction with the surrounding EFG

Quadrupolar Interaction

- × I=5/2
- X Q=25.58 mb

$$EFG: \mathbf{V} = V_{zz} \begin{pmatrix} \frac{\eta_O - 1}{2} & 0 & 0\\ 0 & -\frac{\eta_O - 1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Elements of methodology

Experimental (NMR)

- ✗ Isotopic enrichment (¹⁷O)
- ✗ High-Field (18.8 T)
- ✗ Multi-nuclei (²³Na, ³¹P, ¹⁷O)
- ✗ High-resolution experiments (MAS, MQMAS)

Theoretical (Modelisation)

- X Electronic Struct. : DFT
- X NMR parameters : DFT-PAW/GIPAW
- X MD : classical, ab-initio
- X Spectra simulation
- X Used codes :
 - VASP, Quantum-ESPRESSO, PARATEC
 - DL_POLY
 - DMFIT, simpson, gen_mas, gen_MQMAS

Outline

Introduction

General context Some elements of the methodology

NMR First Principles applied to Glass

- × Motivations
- X How to generate glass configurations?
- Case study : Sodium metaphosphate glass (NaPO₃)
 - NMR results (spectra, correlations, ...)
 - EFG distributions
 - Extended Czjzek Model

NMR parameters and structure

- X Potential energy landscape (PEL) in glass science.
- × NMR parameters revealing the PEL

General Conclusions

Sodium metaphosphate glass

3QMAS at 18.8T of NaPO₃

Non-bridging oxygens

- **x** small distribution $(C_Q, \eta_Q) \rightarrow \text{local order}$
- **X** large distribution $\delta_{iso} \rightarrow \text{long}$ distance disorder

F. Vasconcelos et al., Inorg. Chem., 47 7327 (2008)

Filipe Vasconcelos

How to generate glass configurations?

For NMR First-Principles

Which methods?

Molecular Dynamics (MD) :

- X "Ab-initio" MD : accurate, time consuming, few configurations
- X Classical MD : fast, many configurations, empirical Force-Fields
- X Combined approach : classical and first-principles
- X DL_POLY+ VASP (PARATEC : DFT-PAW/GIPAW)

atomio pair	MDiei[i]	Neutron rei [2]	ourmoder
atomic pair	d (Å)	d (Å)	d (Å)
Na-Na	3.1	3.07	3.35
Na-O	2.31	2.33	2.35
0–0	2.51	2.52	2.55
P-P	3.18	2.93	2.95
P-NBO	1.50	1.48	1.45
P-BO	1.59	1.61	1.65
Q ¹	25%	0%	3.5%
Q ²	50%	${\sim}100\%$	93%
Q ³	25%	0%	3.5%

[1] Speghini et al. PCCP 1 p173 (1999)

[2] Pickup et al. J. Phys. Condens. Matter 19 p415116 (2007)

NMR/DFT-GIPAW results on MD configurations

DFT-GIPAW results on MD configurations

Clark-Grandinetti correlation ¹⁷O

Quadrupolar parameter distributions

How can we use this new information?

- extract experimental quadrupolar parameters see Charpentier et al. (SiO₂)
- better understand the distribution of EFG tensor

Czjzek Model

Gaussian isotropic Model for EFG distribution

Analytical formulation

$$P(V_{zz}, \eta_Q) = \frac{1}{\sqrt{2\pi\sigma^5}} V_{zz}^4 \eta_Q \left(1 - \frac{\eta_Q^2}{9}\right) \exp\left[-\frac{V_{zz}^2(1 + \eta_Q^2/3)}{2\sigma^5}\right] [1]$$

Czjzek et al. Phys. Rev. B 23 p2513 (1981)
 G. Le Caër et R. A. Brand J. Phys. Condens. Matter 10 p 10715 (1998)

Filipe Vasconcelos

Czjzek Model

Example : Application to $^{27}\rm{Al}$ in potassium aluminophosphate glass (50(K_2O)x(Al_2O_3)(50-x)(P_2O_5))

DMFIT : Magn. Reson. Chem. 40 70-76 (2002)

Discussion about the Czjzek model

an isotropic model

- No structural information can be extracted from an isotropic distribution [1]
- In case of ¹⁷O, some structural data can be deduced from lineshape analysis. [2]

G. Caër et al., J. of Phys. : Condens. Matt. 22, 065402 (2010)
 F. Vasconcelos et al. (coming soon !! ;)

Extended Czjzek Model (Le Caër et al., 1998)

A perturbation of an anisotropic EFG tensor

$$\mathbf{V}(\epsilon) = \mathbf{V_0} +
ho \, \mathbf{V_{Czjzek}} \qquad \epsilon = rac{
ho ||\mathbf{V_{Czjzek}}||}{||\mathbf{V_0}||}$$

× V_0 : local EFG tensor local with $V_{zz}(0)$ and $\eta(0)$ fixed

X V_{Czjzek} : Czjzek tensor (isotropic noise)

Filipe Vasconcelos

Quantification of the anisotropy part

... looking for structural information

Reminder : Tensor distribution

- × tensor components are distributed not the eigenvalues
- **X** EFG tensor \rightarrow 5 components (U_i , i = 1, 5)
- **X** Czjzek Model \rightarrow all U_i components are normally distributed

$$\mathbf{V} = \begin{pmatrix} v_{xx} & v_{xy} & v_{xz} \\ v_{xy} & v_{yy} & v_{yz} \\ v_{xz} & v_{yz} & v_{zz} \end{pmatrix}$$
$$U_1 = v_{zz}/2$$
$$U_2 = \frac{v_{xz}}{\sqrt{3}}$$
$$U_3 = \frac{v_{yz}}{\sqrt{3}}$$
$$U_4 = \frac{v_{xy}}{\sqrt{3}}$$
$$U_5 = \frac{(v_{xx} - v_{yy})}{2\sqrt{3}}$$

... distributions of U_i components of ¹⁷O in NaPO₃ MD model

... distributions of U_i components of ¹⁷O in NaPO₃ MD model

... distributions of U_i components of ¹⁷O in NaPO₃ MD model

... distributions of U_i components of ¹⁷O in NaPO₃ MD model

Filipe Vasconcelos

Perspective : CSA tensor

Distributions of CSA parameters (²³Na)

- Czjzek distribution on the CSA parameters of ²³Na
- asymetric and anistotropic CSA parameters plays the same role as the EFG parameters

Perspective : CSA

Distributions of tensor components BO and NBO (MD model)

Perspective : CSA

Distributions of tensor components BO and NBO (MD model)

Conclusions

... from the study of this glass structure

Glass structure

- MD + DFT/PAW-GIPAW are the principal tools to study glass structure
- X Our structural model reproduces accurately NMR observations
- X NMR parameter domains are defined for a given compound

Extended Czjzek Model

- Extended model can reproduce quadrupolar parameters distribution observed on MD model
- × EFG tensor clearly presents local character

Outline

Introduction

General context Some elements of the methodology

NMR First Principles applied to Glass

- × Motivations
- X How to generate glass configurations?
- Case study : Sodium metaphosphate glass (NaPO₃)
 - NMR results (spectra, correlations, ...)
 - EFG distributions
 - Extended Czjzek Model

NMR parameters and structure

- X Potential energy landscape (PEL) in glass science.
- × NMR parameters revealing the PEL

General Conclusions

Potential Energy Landscape (PEL)

- × Function of N-body positions $\Phi(\mathbf{R}_1, ..., \mathbf{R}_N)$ [1]
- Quatilative and quantitative description of glass transitions [2,3]
- Relation between dynamics and the sampling of PEL thermodynamic and static properties

Coordinates

- [1] M. Goldstein , J. Chem. Phys., 51, 3728, (1969)
- [3] S. Sastry, Nature, 409, 164 (2001)
- [2] P. G. Debenedetti and F. H. Stillinger, Nature, 410, 259 (2001)

Connection between NMR parameter and PEL

NMR parameters distribution/dispersion

Vibrational "disorder" of EFG in NaCl-like structure

- Binary-Mixture Lennard-Jones potential
- × N = 1728; dt = 0.003; ρ = 1.58; qA = +1; qB = -1
- X NVE ensemble (berendsen scaling)
- X (no electrostatic forces !)

PEL/NMR representation framework

Transition Solid/Liquid 0,4 atom A 0,3 • atom B <U>2 - both 0,2 <V></ 0,1<U2> 0 -0,1 -0,2 <u></u> 0,8 1,6 0,8 1,2 2 0,4 1,2 1,6 2 т Т 0,611 0,61 T=2.0 0,609 T=1.0 T=0.4 <g(r)> ∧_____0,608 ↓______0,607 0,606 0,605 0,604 0 L 0 0.5 1,5 2 3 r_{AB} Т

PEL/NMR representation framework

Conclusions

- X Simple connection between NMR/PEL
- X Structure selectivity of NMR
- X The acces to the NMR param. dynamics
- × ... a way to probe the dynamics of PEL

Challenging tasks

Experimental :

- × get access to the distribution of the anisotropic terms (separately)
- ✗ get acces to the CSA tensors in solid state (in routine ☺)
- X dynamics of NMR parameters in long-time scale (???)

Theoretical :

x following the NMR parameters during the dynamics

General Conclusions

NMR First-Principles is essential for glass structure determination

- **X** Access to distribution (in particular η parameters)
- ✗ Extended Czjzek approach is validated for ¹⁷O
- **×** EFG tensor distribution contains structural information
- CSA tensor can be characterized by Czjzek and extended Czjzek models

NMR/PEL framework

- × ... is elegant
- ✗ ... used in description of dynamics/structure properties of glass.
- **×** ... brings challenging experimental and theoretical problems.

Acknowledgement

Nijmegen

Chandrakala Gowda (NMR) Ernst van Eck (NMR) Arno Kentgens (NMR) Rob de Groot (ESM) Gilles de Wijs (ESM)

Collaborations

Georg Kresse (VASP) Martijn Marsman (VASP) Francesco Mauri (PARATEC) Thibault Charpentier (Glass+NMR) Gérard Le Caër (Extended Czjzek)

Lille

Sylvain Cristol Laurent Delevoye Jean-François Paul Lionel Montagne

Radboud University Nijmegen

Glass structure

Experimental approach

Experimental techniques

- $\label{eq:EXAFS} \textbf{X} EXAFS \rightarrow environment/short range order$
- **X** RAMAN \rightarrow vibration mode (Boson's peak)
- X Neutron/XRay scattering \rightarrow pair distribution function T(r)

× ...

X Solid-State NMR → highly sensitive/ local : short, medium, (long ?) range order

Empirical Force Field

Charge of sodium

charge	\boldsymbol{Q}^0	\boldsymbol{Q}^1	Q ²	Q^3	Q^4
a 1	1	9	11	11	0
$q_{Na} = +1$	3.1%	28.1%	34.4%	34.4%	0.000%
	0	5	22	5	0
$q_{Na} = +0.2$	0%	15.6%	68.8%	15.6%	0%
	0	1	30	1	0
	0%	3.1%	93.8%	3.1%	0%

How can we avoid this « trick »

- X Test finite size effect
- X Test slower (or faster ?) quenching rate by 3 or 4 order magnitude

- ✗ 160 atoms : 32Na-32P-96O, density ~ 2.53 g/ml
- ✗ quench 3500K -> 300K (rate 4 × 10¹² K/s)
- × BKS empirical potential
- X NVE, equilibrated during 2 ps at each T
- × 15 configurations.

NaPO₃ MD ¹⁷O 3QMAS zoom

FIG Chapitre 3

déplacement chimique (ppm)

	δ_{iso}	(ppm)	C _Q (MHz)	r	10
sites	moyenne	écart-type	moyenne	écart-type	moyenne	écart-type
01	86.3	6.3	5.20	0.37	0.30	0.04
O2	95.5	8.4	5.30	0.52	0.15	0.03
O3	133.7	5.4	7.82	0.28	0.67	0.08
O4	133.8	2.9	7.74	0.20	0.67	0.06
O5	91.9	5.3	5.13	0.28	0.15	0.03
O6	81.9	5.0	5.27	0.28	0.26	0.04

FIG Chapitre 3

	N\	/E à 400K	opt	imisé à 0K		
sites	δ_{iso} (ppm)	C _Q (MHz)	η_{Q}	δ_{iso} (ppm)	C _Q (MHz)	η_Q
01	86.3	5.20	0.30	79.2	5.04	0.30
O2	95.5	5.30	0.15	86.9	5.10	0.05
O3	133.7	7.82	0.67	126.4	7.90	0.61
O4	133.9	7.74	0.67	129.3	7.65	0.67
O5	91.9	5.13	0.15	85.2	4.95	0.09
O6	81.9	5.27	0.26	75.6	5.10	0.26

Anhydrous Sodium Phosphates

(a)

F. Vasconcelos et al., Inorg. Chem., 47 7327 (2008)

Na₃P₃O₉ : assisted assignment

MQMAS

Туре	<i>C_Q</i> (MHz)	η_Q	δ_{iso} (ppm)
NBO	4.5	0.3	75.5
NBO	4.3	0.4	77.5
NBO	4.3	0.1	84.0
BO	\sim 7.0	~ 0.6	\sim 120

DFT-GIPAW

sites O	Туре	C_Q (MHz)	η_Q	δ_{iso} calc (ppm)
01	NBO	4.65	0.31	78.2
02	NBO	4.74	0.07	84.4
O3	BO	7.72	0.61	124.8
O4	BO	7.51	0.66	126.9
O5	NBO	4.62	0.09	84.3
O6	NBO	4.78	0.26	75.5

F. Vasconcelos et al., Inorg. Chem., 47 7327 (2008)

Discussion

Correlation Structure/NMR

Observations

- No correlation of NBO δ_{iso} with local environment
- ► C_Q First coordination sphere
- η_Q axial/equatorial positions, covalent

Site O	Туре	C _Q (MHz)	ηο	δ_{iso} calc (ppm)
01	NBO	4.65	0.31	78.2
O2	NBO	4.74	0.07	84.4
O5	NBO	4.62	0.09	84.3
O6	NBO	4.78	0.26	75.5